Какие элементы относятся к щелочным металлам. Щелочные металлы и их соединения


Структура внешних электронных слоев в атомах элементов I группы позволяет прежде всего предполагать отсутствие у них тенденции к при­соединению электронов. С другой стороны, от­дача единственного внешнего электрона, каза­лось бы, должна происходить весьма легко и вести к образованию устойчивых одновалент­ных катионов рассматриваемых элементов.

Как показывает опыт, предположения эти в полной мере оправдываются только применительно к элементам левого столбца (Li , Na , К и аналогам). Для меди и ее аналогов они верны лишь, наполовину: в смысле отсутствия у них тенденции к присоединению электронов. Вместе с тем их наиболее удаленный от ядра 18-электронный слой оказывается еще не вполне закрепленным и при определённых условиях способен к частичной потере электронов. Последнее обусловливает возможность существования на ряду с одновалентными С u , Ag и А u также и соединений рассматриваемых элементов, отвечающих их более высокой валентности.

Подобное расхождение выведенных из атомных моделей предположений н результатов опыта показывает, что рассмотрение свойств элементов на основе только электронных структур атомов и без учета остальных особенностей не всегда достаточно для химической характеристики этих элементов даже в самых грубых чертах.

Щелочные металлы.

Применяемое к элементам ряда Li-Cs название щелочные металлы связано с тем, что их гидроокиси являются сильными щелочами. Натрий и калий относятся к наиболее распространенным элементам, составляя соответственно 2,0 и 1,1% от общего числа атомов земной коры. Содержание в ней лития (0,02%), рубидия (0,004%) и цезия (0,00009%) уже значительно меньше, а франция - ничтожно мало. Элементарные Na и К выделены только в 1807 г. Литий открыт в 1817 г., цезий и рубидий - соответственно в 1860 и 1861 г. Элемент № 87 - франций - был открыт в 1939 г., а название свое получил в 1946 г. Природные натрий и цезий являются «чистыми» элементами (23 Na и 133 Cs), литий слагается из изотопов 6 Li (7,4%) и 7 Li (92,6%), калий-из изотопов 39 К (93,22%).
40 К (0,01%) и 41 К (6,77%), рубидий- из изотопов 85 Rb (72,2%) и 87 Rb (27,8%). Из изотопов франция основное значение имеет встречающийся в природе 223 Fr (средняя продолжительность жизни атома 32 мин).

Распространённость:

В природе встречаются только соединения щелочных металлов. Натрий и калий являются постоянными составными частями многих сили­катов. Из отдельных минералов натрия важнейший - поваренная соль (NaCl) входит в состав морской воды и на отдельных участках земной поверхности образует под слоем наносных пород громадные залежи каменной соли. Верхние слои подобных залежей иногда содержат скопления солей калия в виде пластов сильвинита (mKCl∙nNaCl), ка рналлита (КСl MgCl 2 6Н 2 О) и др., служащие основным источником получения соединений этого элемента. Имеющих промышленное значение природных скоплений калийных солей известно лишь немного. Для лития известен ряд минералов, но скопления их редки. Рубидий и цезий встречаются почти исключительно в виде примесей к калию. Следы франция всегда содержатся в урановых рудах . Минералами лития являются, например, сподумен и лепидолит {Li 2 KAl }. Часть калия в последнем из них иногда бывает за­мещена на рубидий. То же относится к карналлиту, который может служить хорошим источником получения рубидия. Для технологии цезия наиболее важен сравнительно редкий минерал поллуцит - CsAI(SiO 3) 2 .

Получение:

В свободном состоянии щелочные металлы могут быть выделены электролизом их расплавленных хлористых солей. Основное практическое значение имеет натрий, ежегодная мировая выработка которого составляет более 200 тыс. т.Схема установки для его получения электролизом расплавленного NaCl показана ниже. Ванна состоит из стального кожуха с шамотной футеровкой, графитовым анодом (А) и кольцевым железным катодом (К), между которыми расположена сетчатая диафрагма. Электролитом обычно служит не чистый NaCl (т. пл. 800 ℃), а более легкоплавкая смесь из приблизительно 40% NaCl и 60% СаСl 2 , что дает возможность работать при температурах около 580 °С. Собирающийся в верхней части кольцевого катодного пространства и переходящий в сборник металлический натрий содержит небольшую (до 5%) примесь кальция, который затем почти полностью выделяется (растворимость Са в жидком натрии при температуре его плавления равна лишь 0,01%). По мере хода электролиза в ванну добавляют NaCl. Расход электроэнергии составляет около 15 кВт ч на 1 кг Na.

2NaCl→ 2Na+Cl 2

Это интересно:

До введения в практику электролитического метода металлический натрий получали накаливанием соды с углем по реакции:

Na 2 CO 3 +2C+244ккал→2Na+3CO

Выработка металлических К и Li несравненно меньше, чем натрия. Литий получают электролизом расплава LiCl + КСl, а калий-действием паров натрия на расплав КСl, поступающий противотоком к ним в специальных дистилляционных колоннах (из верхней части которых выходят пары калия). Рубидий и цезий в больших масштабах почти не добываются. Дли получении небольших количеств этих металлов удобно пользоваться нагреванием в вакууме их хлоридов с металлическим кальцием.

2LiCl→2Li+Cl 2

Физический свойства:

При отсутствии воздуха литий и его аналоги представляют собой серебристо-белые (за исключением желтоватого цезия) вещества с более или менее сильным металлическим блеском. Все щелочные металлы характеризуются небольшими плотностями, малой твердостью, низкими температурами плавления и кипения и хорошей электропроводностью. Их важнейшие константы сопоставлены ниже:

Плотность, г/см 3 .

Температура плавления, °С

Температура кипения, °С

Благодаря малой плотности Li, Na и К всплывают на воде (Li - даже на керосине). Щелочные металлы легко режутся ножом, а твердость наиболее мягкого из них - цезия - не превышает твердость воска. Несветящееся пламя газовой горелки щелочные металлы и их летучие соединения окрашивают в характерные цвета, из которых наиболее интенсивен присущий натрию ярко-желтый.

Это интересно:

Внешне проявляющееся в виде окрашивания пламени испускания нагретыми атомами щелочных металлов световых лучей обусловлено перескоком электронов с более высоких на более низкие энергетические уровни. Например, характерная желтая линия спектра натрия возникает при перескоке электрона с уровня 3р на уровень 3s. Очевидно, что для возможности такого перескока необходимо предварительное возбуждение атома, т. е. перевод одного или нескольких его электронов на более высокий энергетический уровень. В рассматриваемом случае возбуждение достигается за счет теплоты пламени (и требует затраты 48 ккал/г-атом), вообще же оно может последовать в результате сообщения атому энергии различных видов. Другие щелочные металлы вызывают появление следующих окрасок пламени: Li - карминово-красной, К-фиолетовый, Rb - синевато-красной, Cs - синей.

Спектр люминесценции ночного неба показывает постоянное наличие в ней желтого излучения натрия. Высота места его возникновения оценивается в 200-300 км.Т. е. атмосфера на этих высотах содержит атомы натрия (конечно, в ничтожных количествах). Возникновение излучения описывается рядом элементарных процессов (звездочкой показано возбужденное состояние; М -любая третья частица - О 2 , О 0 , N 2 и др.): Na + О 0 + М = NaO + М*, затем NaO + О=О 2 + Na* и, наконец, Na*= Na + λν.

Хранить натрий и калий следует в плотно закрытых сосудах под слоем сухого и нейтрального керосина. Недопустим их контакт с кислотами, водой, хлорированными органическими соединениями и твердой двуокисью углерода. Нельзя накапливать мелкие обрезки калия, которые окисляются особенно легко (из-за своей относительно большой поверхности). Неиспользованные остатки калия и натрия при малых количествах уничтожают взаимодействием с избытком спирта, при больших - сжи­ганием на углях костра. Загоревшиеся в помещении щелочные металлы лучше всего тушить, засыпая сухим порошком кальцинированной соды.

Химические свойства:

С химической стороны литий и его аналоги являются исключительно реакционноспособными металлами (причем активность их по направлению от Li к Cs обычно возрастает). Во всех соединениях щелочные металлы одновалентны. Располагаясь в крайней левой части ряда напряжений, они энергично взаимодействуют с водой по схеме:

2Э + 2H 2 O = 2ЭОН +H 2

При реакции с Li и Na выделение водорода не сопровождается его воспламенением, у К оно уже происходит, а у Rb и Cs взаимодействие протекает со взрывом.

· В соприкосновении с воздухом свежие разрезы Na и К (в меньшей степени и Li) тотчас покрываются рыхлой пленкой продуктов окисле­ния. Ввиду этого Na и К хранят обычно под керосином. Нагретые на воздухе Na и К легко загораются, а рубидий и цезий самовоспламе­няются уже при обычной температуре.

4Э+O 2 →2Э 2 O (для лития)

2Э+O 2 →Э 2 O 2 (для натрия)

Э+O 2 →ЭO 2 (для калия, рубидия и цезия)

Практическое применение находит главным образом перекись натрия (Na 2 0 2). Технически ее получают окислением при 350°С распыленного металлического натрия:

2Na+O 2 →Na 2 O 2 +122ккал

· Расплавы простых веществ способны соединяться с аммиаком, с образованием амидов и имидов, сольватов:

2Na расплав +2NH 3 →2NaNH 2 +H 2 (амид натрия)

2Na расплав +NH 3 →Na 2 NH+H 2 (имид натрия)

Na расплав +6NH 3 → (сольват натрия)

При взаимодействии пероксидов с водой происходит реакция:

2Э 2 O 2 +2H 2 O=4ЭOH+O 2

Взаимодействие Na 2 O 2 с водой сопровождается гидролизом:

Na 2 O 2 +2H 2 O→2NaOH + H 2 O 2 +34 ккал

Это интересно:

Взаимодействие Na 2 O 2 с двуокисью углерода по схеме

2Na 2 O 2 + 2CO 2 =2Na 2 CO 3 +O 2 +111 ккал

служит основой применения перекиси натрия как источника кислорода в изолирующих противогазах и на подводных лодках. Чистая или содержащая различные добавки (например, хлорной извести с примесью солей Ni или С u ) перекись натрия носит техническое название «оксилит». Смешанные препараты оксилита особенно удобны для получения кислорода, который выделяется ими под действием воды. Спрессованный в кубики оксилит может быть использован для получения равномерного тока кислорода в обычном аппарате для получения газов.

Na 2 O 2 +H 2 O=2NaOH+O 0 (выделяется атомарный кислород, вследствие распада перекиси водорода).

Надперекись калия (КО 2 ) нередко вводится в состав оксилита. Его взаимодействие с двуокисью углерода идет в этом случае по суммарномууравнению:

Na 2 O 2 + 2KO 2 + 2СO 2 = Na 2 CO 3 +K 2 CO 3 + 2O 2 + 100 ккал, т. е. двуокись углерода заменяется равным объемом кислорода.

· Способны образовывать озониды. Образование озонида калия-KO 3 идёт по уравнению:

4КОН+3O 3 = 4КO 3 + O 2 +2H 2 O

Он представляет собой красное кристаллическое вещество и является сильнейшим окислителем. При хранении KO 3 медленно распадается по уравнению 2NaO 3 →2NaO 2 +O 2 +11 ккал уже в обычных условиях. Водой он мгновенно разлагается по суммарной схеме 4 KO 3 +2 H 2 O=4 KOH +5 O 2

· Способны реагировать с водородом, с образованием ионных гидридов, по общей схеме:

Взаимодействие водорода с нагретыми щелочными металлами идет медленнее, чем с щелочноземельными. В случае Li требуется нагревание до 700-800 °С, тогда как его аналоги взаимодействуют уже при 350-400 °С. Гидриды щелочных металлов являются очень сильными восстановителями. Окисление их кислородом воздуха в сухом состоянии идет сравнительно медленно, но в присутствии влаги процесс настолько ускоряется, что может привести к самовоспла­менению гидрида. Особенно это относится к гидридам К, Rb и Cs. С водой происходит бурная реакция по схеме:

ЭН+ H 2 O= H 2 +ЭОН

ЭH+O 2 →2ЭOH

При взаимодействии NaH или КН с двуокисью углерода образуется соответствующая соль муравьиной кислоты:

NaH+CO 2 →HCOONa

Способны образовывать комплексы:

NaH+AlCl 3 →NaAlH 4 +3NaCl (алланат натрия)

NaAlH 4 → NaH+AlH 3

Нормальные оксиды щелочных металлов (за исключением Li 2 0) могут быть получены только косвенным путем . Они представляют собой твердые вещества следующих цветов:

Na 2 O+2HCl=2NaCl+H 2 O

Гидроокиси (ЭОН) щелочных металлов представляют собой бес­цветные, очень гигроскопичные вещества, разъедающие большинство соприкасающихся с ними материалов. Отсюда их иногда употребляемое в практике название - едкие щелочи. При действии щелочей кожа человеческого тела сильно разбухает и становится скользкой; при более продолжительном действии образуется очень болезненный глубокий ожог. Особенно опасны едкие щелочи для глаз (работать рекомен­дуется в защитных очках). Попавшую на руки или платье щелочь следует тотчас же смыть водой, затем смочить пораженное место очень разбавленным раствором какой- либо кислоты и вновь промыть водой.

Все они сравнительно легкоплавки и летучи без разложения (кроме отщепляющей воду LiOH).Для получения гидроксидовщелочных металловв основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрияэлектролизомконцентрированного водного раствораповаренной соли:

2NaCl+2H 2 O→2NaOH+Cl 2 +H 2

Ø Являются типичными основаниями:

NaOH+HCl=NaCl+H 2 O

2NaOH+CO 2 =Na 2 CO 3 +H 2 O

2NaOH+2NO 2 =NaNO 3 +NaNO 2 +H 2 O

Ø Способны образовывать комплексы:

NaOH+ZnCl 2 = (ZnOH)Cl+NaCl

2Al+2NaOH+6H 2 O=2Na+3H 2

Al 2 O 3 + 6NaOH= 2Na 3 AlO 3 +3H 2 O

Al(OH) 3 +NaOH=Na

Ø Способны реагировать с неметаллами:

Cl 2 +2KOH=KCl+KClO+H 2 O(реакция идёт без нагреванием)

Cl 2 +6KOH=5KCl+KClO 3 +3H 2 O (реакция идёт с нагреванием)

3S+6NaOH=2Na 2 S+Na 2 SO 3 +3H 2 O

Ø Применяются в органическом синтезе (в частности гидроксид калия и натрия, в примерах указан гидроксид натрия):

NaOH+C 2 H 5 Cl=NaCl+C 2 H 4 (метод получения алкенов, этилена (этена) в данном случае), использовался спиртовой раствор гидроксида натрия.

NaOH+C 2 H 5 Cl=NaCl+C 2 H 5 OH (метод получения спиртов, этанола в данном случае), использовался водный раствор гидроксида натрия.

2NaOH+C 2 H 5 Cl=2NaCl+C 2 H 2 +H 2 O (метод получения алкинов, ацетилена (этина) в данном случае), использовался спиртовой раствор гидроксида натрия.

C 6 H 5 OH (фенол) +NaOH= C 6 H 5 ONa+H 2 O

NaOH(+CaO)+CH 3 COONa→Na 2 CO 3 CH 4 (один из способов получения метана)

Ø Надо знать разложение нескольких солей:

2KNO 3 →2KNO 2 +O 2

4KClO 3→ KCl+3KClO 4

2KClO 3→ KCl+3O 2

4Na 2 SO 3 →Na 2 S+3Na 2 SO 4

Примечательно то, что разложение нитратов идет примерно в диапазоне 450-600 ℃, далее они плавятся без разложения, но при достижении примерно 1000- 1500 ℃ идет разложение по схеме:

4LiNO 2 →2Li 2 O+4NO+O 2

Это интересно:

K 4 [ Fe (CN ) 6 ]+ FeCl 3 = KFe [ Fe (CN ) 6 ]+3 KCl (качественная реакция на Fe 3+)

3K 4 +4FeCl 3 =Fe 4 3 +12KCl

Na 2 O 2 +2 H 2 O=2NaOH+ H 2 O 2

4NaO 2 +2 H 2 O=4NaOH+ 3O 2

4NaO 3 +2 H 2 O=4NaOH+5O 2 ( реакцияозониданатриясводой )

2NaO 3→ 2NaO 2 +O 2 (Распад происходит при различных температурах, например: распад озонида натрия при -10 °C, озонида цезия при +100°C)

NaNH 2 +H 2 O→ NaOH+NH 3

Na 2 NH+2H 2 O→ 2NaOH+NH 3

Na 3 N+3H 2 O→3NaOH+NH 3

KNO 2 +2Al+KOH+5H 2 O→2K+NH 3

2NaI + Na 2 O 2 + 2H 2 SO 4 →I 2 ↓+ 2Na 2 SO 4 + 2H 2 O

Fe 3 O 4 +4NaH=4NaOH+3Fe

5NaN 3 +NaNO 3 →8N 2 +3Na 2 O

Применение:

Натрием широко пользуются при синтезах органических соединений и отчасти для получения некоторых его производных. В ядерной технике он используется как теплоноситель.

Литий имеет совершенно исключительное значение для термоядерной техники. В резиновой промышленности он используется при выработке искусственного каучука (как катализатор полимеризации), в металлургии - как ценная присадка к некоторым другим металлам и сплавам. Например, присадка лишь сотых долей процента лития сильно повышает твердость алюминия и его сплавов, а присадка 0,4% лития к свинцу почти в три раза повышает его твердость, не ухудшая сопротивления на изгиб. Имеются указания на то, что подобная же присадка цезия сильно улучшает механические свойства магния и предохраняет его от коррозии, однако такое его использование. Гидрид натрия используется иногда в металлургии для выделения редких металлов из их соединений. Его 2%-ный раствор в расплавленном NaOH находит применение для снятия окалины со стальных изделий (после минутного выдерживания в нем горячее изделие погружают в воду, причем восстановившаяся по уравнению

Fe 3 O 4 +4NaH = 4NaOH + 3Fe (окалина отпадает).

Принципиальная схема заводской установки для получения соды по амми­ачному методу (Сольвэ, 1863 г.) .

В печи (Л) идет обжиг известняка, причем образующаяся СO 2 поступает в карбонизационную башню (Б), а СаО гасится водой (В), после чего Ca(OH) 2 перекачивают в смеситель (Г), где она встречается с NH 4 Cl, при этом выделяется аммиак. Последний поступает в абсорбер (Д)и насыщает там крепкий раствор NaCl, который затем перекачивают в карбонизационную башню, где при взаимодействии с СО 2 образуются NaHCO 3 и NH 4 Cl. Первая соль почти полностью осаждается и задерживается на вакуум-фильтре (Е), а вторую вновь перека­чивают в смеситель (Г). Таким образом все время расходуются NaCl и известняк, а полу­чаются NaHCO 3 и CaCl 2 (последний - в виде отброса производства). Бикарбонат натрия пе­реводят затем нагреванием в соду.

Редактор: Харламова Галина Николаевна

Относятся к числу s-элементов. Электрон внешнего электронного слоя атома щелочного металла по сравнению с другими элементами того же периода наиболее удален от ядра, т. е. радиус атома щелочного металла наибольший по сравнению с радиусами атомов других элементов того же периода. В связи

Распределение электронов по энергетическим уровням у атомов щелочных металловТаблица 1

Элемент

Заряд ядра

Число электронов на энергетических уровнях

Радиус атома

K

L

M

N

O

P

Q

1,57

1,86

2,36

2,43

2,62

с этим валентный электрон внешнего слоя атомов щелочных металлов легко отрывается, превращая их в положительные однозарядные ионы. Этим обусловлено , что соединения щелочных металлов с другими элементами построены по типу ионной связи.

В окислительно-восстановительных реакциях щелочные ведут себя как сильные восстановители, и эта способность возрастает от металла к металлу с увеличением заряда ядра атома.

Среди металлов щелочные металлы проявляют наиболее высокую химическую активность. В ряду напряжений все щелочные металлы располагаются в начале ряда. Электрон внешнего электронного слоя является единственным валентным электроном, поэтому щелочные металлы в любых соединениях одновалентны. Степень окисления щелочных металлов обычно +1.
Физические свойства щелочных металлов приведены в табл. 19.

Физические свойства щелочных металлов. Таблица 19

Элемент

Порядковый номер

Атомный вес

Температура плавления, °С

Температура кипения, °С

Плотность, г/смЗ

Твердость по шкале

6,94

22,997

39,1

85,48

132,91

38,5

1336

0,53

0,97

0,86

1,53

Типичными представителями щелочных металлов являются натрий и калий.
■ 26. Составьте общую характеристику щелочных металлов по следующему плану:
а) сходство и различие в строении атомов щелочных металлов;
б) особенности поведения щелочных металлов в окислительно-восстановительных реакциях;
в) тип кристаллической решетки в соединениях щелочных металлов;
г) особенности изменения физических свойств металлов в зависимости от радиуса атома.

Натрий

Электронная конфигурация атома натрия ls 2 2s 2 2p 6 3s 1 . Структура его внешнего слоя:

Натрий встречается в природе только в виде солей. Наиболее распространенной солью натрия является поваренная соль NaCl, а также минерал сильвинит КCl · NaCl и некоторые сернокислые соли, например глауберова соль Na2SO4 · 10H2O, встречающаяся в больших количествах в заливе Каспийского моря Кара-Богаз-Гол.
Из поваренной соли NaCl металлический натрий получают путем электролиза расплава этой соли. Установка для электролиза изображена на рис. 76. В расплавленную соль опускают электроды. Анодное и катодное пространство разделено диафрагмой, которая изолирует образующийся от натрия, чтобы не произошло обратной реакции. Положительный ион натрия принимает с катода электрон и превращается в нейтральный атом натрия. Нейтральные атомы натрия собираются на катоде в виде расплавленного металла. Происходящий на катоде процесс можно изобразить следующей схемой:
Na + + Na 0 .
Поскольку на катоде происходит принятие электронов, а всякое принятие электронов атомом или ионом является восстановлением, ионы натрия на катоде восстанавливаются. На аноде ионы хлора отдают электроны, т. е. происходит процесс окисления и выделение свободного

газообразного хлора, что можно изобразить следующей схемой:

Cl — — е — → Cl 0

Полученный металлический натрий имеет серебристо-белый цвет, легко режется ножом. Срез у натрия, если его рассмотреть сразу после разреза, имеет яркий металлический блеск, но быстро тускнеет вследствие крайне быстрого окисления металла.

Рис. 76. Схема установки для электролиза расплава поваренной соли. 1 - кольцевой катод; 2 - колокол для выведения газообразного хлора из анодного пространства

Если натрий окислять в небольшом количестве кислорода при температуре около 180°, получается окись натрия:
4Na + О2 = 2Na2O.
При горении в кислороде получается перекись натрия:
2Na + O2 = Na2O2.
При этом натрий сгорает ослепительно желтым пламенем.
В связи с легкой и быстрой окисляемостью натрия его хранят под слоем керосина или парафина, причем предпочтительнее, так как в керосине все же растворяется некоторое количество воздуха и окисление натрия хотя и медленно, но все же происходит.

Натрий может давать соединение с водородом - гидрид NaH, в котором проявляет степень окисления - 1. Это солеподобное соединение, которое по характеру химической связи и величине степени окисления отличается от летучих гидридов элементов главных подгрупп IV-VII группы.
Металлический натрий может реагировать не только с кислородом и водородом, но и с многими простыми и сложными веществами. Например, при растирании в ступке с серой натрий бурно реагирует с ней, образуя :
2Na + S = Na2S

Реакция сопровождается вспышками, поэтому ступку нужно держать подальше от глаз и обернуть руку полотенцем. Для реакции следует брать небольшие кусочки натрия.
Натрий энергично сгорает в хлоре с образованием хлорида натрия, что особенно хорошо наблюдать в хлор-кальциевой трубке, в которой через расплавленный и сильно разогретый натрий пропускают ток хлора:
2Na + Сl2 = 2NaCl
Натрий реагирует не только с простыми, но и со сложными веществами, например с водой, вытесняя из нее , так как является весьма активным металлом, в ряду напряжений стоит намного левее водорода и легко вытесняет последний из воды:
2Na + 2Н2O = 2NaOH + H2
Загоревшийся щелочной металл нельзя тушить водой. Лучше всего засыпать его порошком кальцинированной соды. В присутствии натрия бесцветное пламя газовой горелки окрашивается в желтый цвет.
Металлический натрий можно использовать как катализатор в органическом синтезе, например при производстве синтетического каучука из бутадиена. Он служит исходным веществом для получения других соединений натрия, например перекиси натрия.

■ 27. Докажите с помощью приведенных в тексте уравнений реакций с участием металлического натрия, что он ведет себя как восстановитель.

28. Почему натрий нельзя хранить на воздухе?

29. Ученик опустил в раствор сульфата меди кусочек натрия, надеясь вытеснить из соли металлическую . Вместо металла красного цвета получился студенистый голубой осадок. Опишите происшедшие реакции и напишите их уравнения в молекулярной и ионной формах. Как следовало изменить условия реакции, чтобы реакция привела к желаемому результату? Уравнения напишите в молекулярной, полной и сокращенной ионной формах.
30. В сосуд с 45 мл воды поместили 2,3 г металлического натрия. Какова едкого натра, образовавшегося по окончании реакции.
31. Какие средства можно применять при тушении загоревшегося натрия? Дайте обоснованный ответ.

Кислородные соединения натрия. Едкий натр

Кислородными соединениями натрия, как уже было сказано, являются окись натрия Na2O и перекись натрия Na2O2.
Окись натрия Na2O особого значения не имеет. Она энергично реагирует с водой, образуя едкий натр:
Na2O + Н2O = 2NaOH
Перекись натрия Na202 - желтоватый порошок. Ее можно рассматривать как своеобразную соль перекиси водорода, ибо структура ее такая же, как у Н2O2. Как и , перекись натрия является сильнейшим окислителем. При действии воды она образует щелочь и :
Na2O2 + Н2O = Н2O2 + 2NaOH
образуется и при действии разбавленных кислот на перекись натрия:
Na2O2 + H2SO4 = Н2O2 + Na2SO4
Все указанные выше свойства перекиси натрия позволяют использовать ее для отбелки все возможных материалов.

Рис. 77. Схема установки для электролиза раствора поваренной соли. 1 - анод; 2 - диафрагма, разделяющее анодное и катодное пространство; 3 -катод

Очень важным соединением натрия является гидроокись натрия, или едкий натр, NaOH. Его называют также каустической содой, или просто каустиком.
Для получения едкого натра используют поваренную соль - наиболее дешевое природное соединение натрия, подвергая ее электролизу, но в этом случае применяют не расплав, а раствор соли (рис. 77). Описание процесса электролиза раствора поваренной соли см. § 33. На рис. 77 показано, что анодное и катодное пространство разделено диафрагмой. Это сделано с той целью, чтобы образующиеся продукты не вступали между собой во взаимодействие, например Сl2 + 2NaOH = NaClO + NaCl + Н2O.

Едкий натр - твердое кристаллическое вещество белого цвета, прекрасно растворимое в воде. При растворении едкого натра в воде выделяется большое количество тепла и раствор сильно разогревается. Едкий натр необходимо хранить в хорошо закупоренных сосудах, чтобы предохранить его от проникновения водяных паров, под действием которых он может сильно увлажниться, а также двуокиси углерода, под действием которой едкий натр может постепенно превратиться в карбонат натрия:
2NaOH + СO2 = Na2CO3+ Н2O.
Едкий натр-типичная щелочь, поэтому меры предосторожности при работе с ним такие же, как и при работе с любыми другими щелочами.
Едкий натр применяется во многих отраслях промышленности, например для очистки нефтепродуктов, производства мыла из жиров, в бумажной промышленности, в производстве искусственного волокна и красителей, производстве медикаментов и др. (рис. 78).

Запишите в тетрадь области применения едкого натра.

Из солей натрия следует отметить в первую очередь поваренную соль NaCl, которая служит основным сырьем для получения едкого натра и металлического натрия (подробно об этой соли см. стр. 164), соду Na2CO3 (см. стр. 278), Na2SO4 (см. стр. 224), NaNO3 (см. стр. 250) и др.

Рис. 78. Применение едкого натра

■ 32. Опишите способ получения едкого натра электролизом поваренной соли.
33. Едкий натр можно получить действием на карбонат натрия гашеной известью. Составьте молекулярную и ионные формы уравнения этой реакции, а также рассчитайте, сколько соды, содержащей 95% карбоната, потребуется для получения 40 кг едкого натра.
34. Почему при хранении раствора едкого натра в склянках с притертыми пробками пробки «заедают» и их нельзя вынуть? Если же в течение некоторого срока подержать склянку опрокинутой в воду, то пробка свободно вынимается. Объясните, приведя уравнения реакций, что за процессы имеют место в данном случае.
35. Напишите уравнения реакций в молекулярной и ионных формах, характеризующих свойства едкого натра как типичной щелочи.
36. Какие меры предосторожности следует соблюдать при работе с едким натром? Какие меры первой помощи следует оказать при ожогах едким натром?

Калий

Калий К - также довольно распространенный щелочной металл, отличающийся от натрия величиной атомного радиуса (четвертый период) и потому обладающий большей химической активностью, чем натрий. Электронная конфигурация атома калия 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 .
Структура его внешнего электронного слоя


Калий - мягкий металл, который хорошо режется ножом. Во избежание окисления его, как и натрий, хранят под слоем керосина.
С водой калий реагирует еще более бурно, чем натрий, с образованием щелочи и с выделением водорода, который загорается:
2К + 2Н2O = 2КОН + Н2.
При сжигании в кислороде (при этом для сжигания рекомендуется брать еще более мелкие кусочки металла, чем для сжигания натрия) он, подобно натрию, сгорает очень энергично с образованием перекиси калия.
Следует отметить, что в обращении калий гораздо опаснее натрия. Сильный взрыв может произойти даже при разрезании калия, поэтому обращаться с ним нужно еще осторожнее.
Гидроокись калия, или едкое кали КОН - белое кристаллическое вещество. Едкое кали во всех отношениях сходно с едким натром. Они широко применяются в мыловаренной промышленности, но его получение обходится несколько дороже, поэтому такого применения, как NaOH, оно не находит.
Соли калия следует отметить особо, так как некоторые из них широко используются в качестве удобрения. Таковы хлорид калия КСl, нитрат калия KNO3, который является также азотным удобрением.

■ 37. Чем объяснить то, что едкое кали химически активнее едкого натра?
38. В кристаллизатор с водой опустили кусочек калия. После того как реакция закончилась, туда же поместили немного цинка в виде белого студенистого осадка. Осадок исчез, а при испытании раствора фенолфталеином последний окрасился в малиновый цвет. Какие химические процессы здесь произошли?
Какие 34

Щелочные металлы — общее название элементов 1-й группы периодической системы химических элементов. Ее состав: литий (Li), натрий (Na), калий (K), рубидий (Rb), цезий (Cs), франций (Fr), и гипотетический элемент — унуненний (Uue). Наименование группы произошло от названия растворимых гидроксидов натрия и калия, обладающих реакцией и вкусом щелочи. Рассмотрим общие черты строения атомов элементов, свойства, получение и применение простых веществ.

Устаревшая и новая нумерация группы

По устаревшей системе нумерации щелочные металлы, занимающие крайний слева вертикальный столбец таблицы Менделеева, относятся к I-А группе. В 1989 году в качестве основного Международный химический союз (IUPAC) предложил иной вариант (длиннопериодный). Щелочные металлы в соответствии с новой классификацией и сплошной нумерацией относятся к 1-й группе. Открывает эту совокупность представитель 2-го периода — литий, завершает ее радиоактивный элемент 7-го периода — франций. У всех металлов 1-й группы во внешней оболочке атомов содержится один s-электрон, который они легко отдают (восстанавливаются).

Строение атомов щелочных металлов

Для элементов 1-й группы характерно наличие второго энергетического уровня, повторяющего строение предшествующего инертного газа. У лития на предпоследнем слое — 2, у остальных — по 8 электронов. В химических реакциях атомы легко отдают внешний s-электрон, приобретая энергетически выгодную конфигурацию благородного газа. Элементы 1-й группы обладают малыми величинами энергии ионизации и электроотрицательности (ЭО). Они легко образуют однозарядные положительные ионы. При переходе от лития к францию возрастает количество протонов и электронов, радиус атома. Рубидий, цезий и франций легче отдают внешний электрон, чем предшествующие им в группе элементы. Следовательно, в группе сверху вниз увеличивается восстановительная способность.

Легкая окисляемость щелочных металлов приводит к тому, что элементы 1-й группы существуют в природе в виде соединений своих однозарядных катионов. Содержание в земной коре натрия — 2,0%, калия — 1,1%. Другие элементы в ней находятся в малых количествах, например, запасы франция — 340 г. Хлорид натрия растворен в морской воде, рапе соленых озер и лиманов, образует залежи каменной или поваренной соли. Вместе с галитом встречаются сильвинит NaCl . KCl и сильвин KCl. Полевой шпат образован алюмосиликатом калия K 2 . В воде ряда озер растворен карбонат натрия, а запасы сульфата элемента сосредоточены в акватории Каспийского моря (Кара-Богаз-Гол). Встречаются залежи нитрата натрия в Чили (чилийская селитра). Существует ограниченное число природных соединений лития. В качестве примесей к соединениям элементов 1-й группы встречаются рубидий и цезий, а франций находят в составе урановых руд.

Последовательность открытия щелочных металлов

Британский химик и физик Г. Дэви в 1807 году провел электролиз расплавов щелочей, впервые получив натрий и калий в свободном виде. В 1817 году шведский ученый Иоганн Арфведсон открыл элемент литий в минералах, а в 1825-м Г. Дэви выделил чистый металл. Рубидий был впервые обнаружен в 1861 году Р. Бунзеном и Г. Кирхгофом. Немецкие исследователи анализировали состав алюмосиликатов и получили в спектре красную линию, соответствующую новому элементу. В 1939 году сотрудница Парижского института радиоактивности Маргарита Пере установила существование изотопа франция. Она же дала название элементу в честь своей родины. Унуненний (эка-франций) — предварительное название нового вида атомов с порядковым номером 119. Временно используется химический символ Uue. Исследователи с 1985 года предпринимают попытки синтеза нового элемента, который станет первым в 8-м периоде, седьмым в 1-й группе.

Физические свойства щелочных металлов

Почти все щелочные металлы обладают серебристо-белым цветом и металлическим блеском на свежем срезе (цезий имеет золотисто-желтую окраску). На воздухе блеск тускнеет, появляется серая пленка, на литии — зеленовато-черная. Этот металл обладает наибольшей твердостью среди соседей по группе, но уступает тальку — самому мягкому минералу, открывающему шкалу Мооса. Натрий и калий легко сгибаются, их можно разрезать. Рубидий, цезий и франций в чистом виде представляют тестообразную массу. Плавление щелочных металлов происходит при относительно низкой температуре. Для лития она достигает 180,54 °С. Натрий плавится при температуре 97,86 °С, калий — при 63,51 °С, рубидий — при 39,32 °С, цезий — при 28,44 °С. Плотность щелочных металлов меньше, чем родственных им веществ. Литий плавает в керосине, поднимается на поверхность воды, калий и натрий также всплывают в нем.

Кристаллическое состояние

Кристаллизация щелочных металлов происходит в кубической сингонии (объемно-центрированной). Атомы в ее составе обладают зоной проводимости, на свободные уровни которой могут переходить электроны. Именно эти активные частицы осуществляет особую химическую связь — металлическую. Общность строения энергетических уровней и природа кристаллических решеток объясняют сходство элементов 1-й группы. При переходе от лития к цезию возрастают массы атомов элементов, что приводит к закономерному увеличению плотности, а также к изменению других свойств.

Химические свойства щелочных металлов

Единственный внешний электрон в атомах щелочных металлов слабо притягивается к ядру, поэтому им свойственна низкая энергия ионизации, отрицательное или близкое к нулю сродство к электрону. Элементы 1-й группы, обладая восстановительной активностью, практически не способны окислять. В группе сверху вниз возрастает активность в химических реакциях:

Получение и применение щелочных металлов

Металлы, относящиеся к 1-й группе, в промышленности получают электролизом расплавов их галогенидов и других природных соединений. При разложении под действием электрического тока положительные ионы на катоде присоединяют электроны и восстанавливаются до свободного металла. На противоположном электроде происходит окисление аниона.

При электролизе расплавов гидроксидов на аноде окисляются частицы OH - , выделяется кислород и получается вода. Еще один метод заключается в термическом восстановлении щелочных металлов из расплавов их солей кальцием. Простые вещества и соединения элементов 1-й группы имеют практическое значение. Литий служит сырьем в атомной энергетике, используется в ракетной технике. В металлургии применяется для удаления остатков водорода, азота, кислорода, серы. Гидроксидом дополняют электролит в щелочных аккумуляторах.

Натрий необходим для атомной энергетики, металлургии, органического синтеза. Цезий и рубидий используются при изготовлении фотоэлементов. Широкое применение находят гидроксиды и соли, особенно хлориды, нитраты, сульфаты, карбонаты щелочных металлов. Катионы обладают биологической активностью, особенно важны для организма человека ионы натрия и калия.

Щелочные металлы - франций, цезий, рубидий, калий, натрий, литий - называются так из-за того, что образуют щелочи при взаимодействии с водой. Из-за высокой способности вступать в реакцию эти элементы следует хранить под слоем минерального масла или керосина. Самым активным из всех указанных веществ считается франций (обладает радиоактивностью).

Щелочные металлы - вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском. Щелочные металлы кипят и плавятся при низких температурах, обладают высокой тепло- и электропроводимостью. Они имеют также небольшую плотность.

Химические свойства щелочных металлов

Вещества являются сильными восстановителями, проявляют в соединениях степень окисления (единственную) +1. С увеличением атомной массы щелочных металлов увеличивается и восстановительная способность. Практически все соединения растворимы в воде, все они носят ионный характер.

При умеренном нагревании щелочные металлы воспламеняются на воздухе. В соединении с водородом вещества формируют солеобразные гидриды. Продуктами сгорания, как правило, являются пероксиды.

Оксидами металлов щелочных являются твердые вещества желтого (оксиды рубидия и калия), белого и лития), и оранжевого (цезия оксид) цветов. Указанные оксиды способны реагировать с водой, кислотами, кислородом, кислотными и амфотерными оксидами. Эти основные свойства присущи им всем и носят ярко выраженный характер.

Пероксиды металлов щелочных - порошки желтовато-белого цвета. Они способны вступать в реакцию с углекислыми и угарными газами, кислотами, неметаллами, водой.

Гидроксиды металлов щелочных представляют собой растворимые в воде твердые вещества белого цвета. В этих соединениях проявляются (достаточно ярко) основные свойства щелочей. От лития к францию сила оснований и степень растворимости в воде увеличиваются. Гидроксиды считаются достаточно сильными электролитами. Они вступают в реакцию с солями, и оксидами, отдельными неметаллами, За исключением соединения с литием все остальные проявляют термическую устойчивость. При прокаливании происходит его разложение на воду и оксид. Получаются указанные соединения при помощи электролиза хлоридных водных растворов, ряда обменных реакций. Гидроксиды получают также при взаимодействии элементов (или оксидов) с водой.

Практически все соли описываемых металлов (за исключением отдельных солей лития) в воде растворимы хорошо. Образованные слабыми кислотами, растворы солей имеют реакцию среды (щелочную) в связи с гидролизом, образованные же сильными кислотами соли не гидролизуются. Распространенными солями являются каменная силикатный клей (растворимое стекло), бертолетова соль, марганцовка, сода питьевая, кальцинированная сода и прочие.

Все соединения щелочных металлов обладают способностью изменять цвет пламени. Это применяют в химическом анализе. Так, пламя в окрашивается ионами лития, в фиолетовый - ионами калия, в желтый - натрия, беловато-розовый - рубидия, фиолетово-красный - цезия.

В связи с тем, что все щелочные элементы являются самыми сильными восстановителями, получить их можно путем электролиза расплавов солей.

Применение щелочных металлов

Элементы используются в разных сферах деятельности человека. Например, цезий используется в фотоэлементах. В подшипниковых сплавах в качестве катализатора применяется литий. Натрий присутствует в газоразрядных лампах, ядерных реакторах как теплоноситель. В научно-исследовательской деятельности применяется рубидий.

Щелочны́е мета́ллы - это элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации - элементы главной подгруппы I группы) : литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, и унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щёлочами .

Химические свойства щелочных металлов

Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li, Cs) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.

1. Взаимодействие с водой . Важное свойство щелочных металлов - их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водойлитий:

При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.

2. Взаимодействие с кислородом . Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

· Только литий сгорает на воздухе с образованием оксида стехиометрического состава:

· При горении натрия в основном образуется пероксид Na 2 O 2 с небольшой примесью надпероксида NaO 2:

· В продуктах горения калия , рубидия и цезия содержатся в основном надпероксиды:

Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О 2 2− и надпероксид-ион O 2 − .

Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО 3 . Все кислородные соединения имеют различную окраску, интенсивность которой углубляется в ряду от Li до Cs:

Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:

Пероксиды и надпероксиды проявляют свойства сильных окислителей :

Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:

3. Взаимодействие с другими веществами . Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованиемгидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов , сульфидов , нитридов , фосфидов , карбидов исилицидов :

При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды . Активно (со взрывом) реагируют щелочные металлы скислотами.

Щелочные металлы растворяются в жидком аммиаке и его производных - аминах и амидах:

При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиесяамиды легко разлагаются водой с образованием щёлочи и аммиака:

Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):

4. Качественное определение щелочных металлов . Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:

Окраска пламени щелочными металлами
и их соединениями

Щелочноземельные металлы.

Щё́лочноземе́льные мета́ллы - химические элементы II-й группы периодической таблицы элементов: бериллий, магний, кальций,стронций, барий и радий .

Физические свойства

Все щёлочноземельные металлы - серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение - стронций). Плотность щёлочноземельных металлов с порядковым номером растёт, хотя явно рост наблюдается только начиная с кальция, который имеет минимальную среди них плотность (ρ = 1,55 г/см³), самый тяжёлый - радий, плотность которого примерно равна плотности железа.

Химические свойства

Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns ², и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1).

Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенамидаже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор - исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, так же и как щелочные металлы (и кальций), хранят под слоем керосина.

Оксиды и гидроксиды щёлочноземельных металлов имеют тенденцию к усилению основных свойств с ростом порядкового номера: Be(OH) 2 - амфотерный, нерастворимый в воде гидроксид, но растворим в кислотах (а также проявляет кислотные свойства в присутствии сильных щелочей), Mg(OH) 2 - слабое основание, нерастворимое в воде, Ca(OH) 2 - сильное, но малорастворимое в воде основание, Sr(OH) 2 - лучше растворимо в воде, чем гидроксид кальция, сильное основание (щёлочь) при высоких температурах, близких к точке кипения воды (100 °C), Ba(OH) 2 - сильное основание (щёлочь), по силе не уступающее KOH или NaOH, иRa(OH) 2 - одна из сильнейших щелочей, очень коррозионное вещество

Нахождение в природе

Все щёлочноземельные металлы имеются (в разных количествах) в природе. Ввиду своей высокой химической активности все они в свободном состоянии не встречаются. Самым распространённым щёлочноземельным металлом является кальций, количество которого равно 3,38 % (от массы земной коры). Немногим ему уступает магний, количество которого равно 2,35 % (от массы земной коры). Распространены в природе также барий и стронций, которых соответственно 0,05 и 0,034 % от массы земной коры. Бериллий является редким элементом, количество которого составляет 6·10 −4 % от массы земной коры. Что касается радия, который радиоактивен, то это самый редкий из всех щёлочноземельных металлов, но он в небольшом количестве всегда содержится в урановых рудах. В частности, он может быть выделен оттуда химическим путём. Его содержание равно 1·10 −10 % (от массы земной коры)

Алюминий.

Алюми́ний - элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al (лат. Aluminium ). Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий - лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- иэлектропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Впервые алюминий был получен датским физиком Гансом Эрстедом в 1825 году действием амальгамы калия нахлорид алюминия с последующей отгонкой ртути.Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 6 с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Для производства 1000 кг чернового алюминия требуется 1920 кг глинозёма, 65 кг криолита, 35 кг фторида алюминия, 600 кг анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока