Большая энциклопедия нефти и газа. Датчик касания


Датчик касания для Arduino

Модуль представляет собой сенсорную кнопку, на его выходе формируется цифровой сигнал, напряжение которого соответствует уровням логических единицы и нуля. Относится к емкостным датчикам касания. С такого рода устройствами ввода данных мы сталкиваемся при работе с дисплеем планшета, айфона или тачскрин монитора. Если на мониторе мы нажимаем на иконку стилусом или пальцем, то здесь для этого используется область поверхности платы размером с иконку Windows касание которой производится только пальцем, стилус исключается. Основа модуля микросхема TTP223-BA6 . Есть индикатор питания.

Управление ритмом воспроизведения мелодии

При установке в прибор сенсорную область поверхности платы модуля закрывают тонким слоем стеклотекстолита, пластмассы, стекла иди дерева. К преимуществам емкостной сенсорной кнопки относится большой срок службы и возможность герметизации передней панели прибора, антивандальные свойства. Это позволяет использовать датчик касания в работающих на открытом воздухе приборах в условиях прямого попадания капель воды. Например, кнопка дверного звонка или бытовые приборы. Интересно применение в оборудовании умный дом - замена выключателей освещения.

Характеристики

Напряжение питания 2,5 - 5,5 В
Время отклика на касание в различных режимах потребления тока
низкое 220 мс
обычное 60 мс
Выходной сигнал
Напряжение
высокий лог. уровень 0,8 Х напряжение питания
низкий лог. уровень 0,3 Х напряжение питания
Ток при питании 3 В и логических уровнях, мА
низкий 8
высокий -4
Размеры платы 28 x 24 x 8 мм

Контакты и сигнал

Нет касания - выходной сигнал имеет низкий логический уровень, касание - на выходе датчика логическая единица.

Почему это работает или немного теории

Тело человека, как и все что нас окружает, обладает электрическими характеристиками. При срабатывании датчика прикосновения проявляются наши емкость, сопротивление, индуктивность. На нижней стороне платы модуля расположен участок фольги соединенный с входом микросхемы. Между пальцем оператора и фольгой на нижней стороне расположен слой диэлектрика - материал несущей основы печатной платы модуля. В момент касания происходит заряд тела человека микроскопическим током, протекающим через конденсатор, образованный участком фольги и пальцем человека. При упрощенном рассмотрении ток протекает через два последовательно соединенных конденсатора: фольга, палец находящихся на противоположных поверхностях платы и тело человека. Поэтому если поверхность платы закрыть тонким слоем изолятора, то это приведет к увеличению толщины слоя диэлектрика конденсатора фольга-палец и не нарушит работу модуля.
Микросхема TTP223-BA6 фиксирует ничтожный импульс микротока и регистрирует прикосновение. Благодаря свойствам микросхемы работать с такими токами никакого вреда такая технология не наносит. Когда мы касаемся корпуса работающего телевизора или монитора через нас проходят микротоки большей величины.

Режим пониженного потребления

После подачи питания датчик касания находится в режиме пониженного энергопотребления. После срабатывания на 12 секунд модуль переходит в обычный режим. Если далее касание не произошло, то модуль вернется в режим пониженного потребления тока. Скорость реакции модуля на касание в различных режимах приведена в характеристиках выше.

Работа совместно с Arduino UNO

Загрузите в Arduino UNO следующую программу.

#define ctsPin 2 // Контакт подключения линии сигнала датчика касания
int ledPin = 13; // Контакт для светодиода

Void setup() {
Serial.begin(9600);
pinMode(ledPin, OUTPUT);
pinMode(ctsPin, INPUT);
}

Void loop() {
int ctsValue = digitalRead(ctsPin);
if (ctsValue == HIGH){
digitalWrite(ledPin, HIGH);
Serial.println("TOUCHED");
}
else{
digitalWrite(ledPin,LOW);
Serial.println("not touched");
}
delay(500);
}

Соедините датчик касания и Arduino UNO как показано на рисунке. Схему можно дополнить включающимся при касании датчика светодиодом, подключенным через резистор 430 Ом к контакту 13. Сенсорные кнопки часто оснащают индикатором касания. Так удобней работать оператору. При нажатии на механическую кнопку мы чувствуем щелчок независимо от реакции системы. Здесь новизна технологии немного удивляет из-за нашей моторики сложившейся годами. Индикатор нажатия избавляет нас от излишнего ощущения новизны.

Тач-сенсоры (датчики касания) бывают разных принципов действия, например резистивный (проводящие пленки), оптический (инфракрасный), акустический (SAW), емкостной и т.д. Данный проект является экспериментом с емкостным датчиком касания. Этот вид датчика хорошо известен как указывающее устройство, используемое в планшетных ПК и смартфонах.

Принцип емкостного датчика касания

Емкостный датчик касания обнаруживает изменение емкости, происходящее на электроде от закрытия проводящим предметом, например пальцем. Есть несколько методов измерения емкости. В этом проекте используется метод интеграции, который используется в измерителе емкости. Изменение емкости Cx довольно небольшое, около 1пФ до 10пФ, но оно будет легко обнаружено, потому что у измерителя емкости разрешение измерения составляет 20пФ. Также, объекты, которые будут обнаруживаться должны быть заземлены, чтобы создать Cx схему согласно с принципом действия. Однако она хорошо работает, даже если человеческое тело изолировано от земли. Это может быть по нижеследующей причине.

Аппаратная часть

Программное обеспечение

Во-первых, откалибруйте каждую точку (получите эталонное время связи с Cs), а затем запустите сканирование в постоянном периоде. Когда время интеграции увеличился и превысит порог, он решит “обнаружено”. Гистерезису требуется порог, или выход не будет стабильным при полу прикосновении. Время измерения для каждой точки равно времени интегрирования, так что это может быть сделано очень быстро.

Измеритель емкости измеряет время интеграции с разрешением один такт (100 нс) с аналоговым компаратором и функцией входной фиксации. Однако эта функция не доступна на всех портах ввода/вывода. Для реализации датчика касания на любом порту ввода/вывода, время интеграции измеряется опросом программным обеспечением, и разрешение становится 3 такта (375ns). В нормальном состоянии число отчета времени около 80, и это достаточно для сенсорных кнопок.

Заключение

В результате, я могу подтвердить, что емкостный сенсор может быть с легкостью реализован на обычном микроконтроллере. Пластиковая накладка может быть до 1 мм в толщину (в зависимости от диэлектрической проницаемости) для хорошей работы. Когда ATtiny2313 используется для модуля датчиков касания, она может иметь 15 точек прикосновения. Программа управления, используемая в этом проекте экспериментальна, и не проверялась в грязных условиях, таких как шумы и помехи, так что для реального использования может потребоваться любой анти-шумовой алгоритм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U? МК AVR 8-бит

ATtiny2313-20PU

1 В блокнот
R1-R8 Резистор

1 МОм

8 В блокнот
R9-R16 Резистор R9-R16 8 В блокнот
C1 Электролитический конденсатор 100 мкФ 1 В блокнот
C2 Конденсатор 100 нФ 1 В блокнот
D1-D8 Светодиод 8

Здесь будут рассмотрены датчики звука и касания, чаще всего использующиеся в составе сигнализаций.

Модуль датчика касания KY-036

Модуль, по сути, представляет собой сенсорную кнопку. Как понимает автор, принцип действия устройства основан на том, что, прикасаясь к контакту датчика человек, становится антенной для приема наводок на частоте бытовой сети переменного тока . Эти сигналы поступают на компаратор LM393YD

Габариты модуля 42 х 15 х 13 мм, масса 2,8 г., в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1.

При срабатывании датчика загорается (мигает) светодиод L2. Потребляемый ток 3,9 мА в ждущем режиме и 4,9 мА при срабатывании.

Не совсем ясно, какой порог чувствительности датчика должен регулироваться переменным резистором. Данные модули с компаратором LM393YD являются стандартными и к ним припаивают различные датчики, получая, таким образом, модули различного назначения. Выводы питания «G» — общий провод, «+» – питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, при срабатывании датчика на выходе появляется импульсы с частотой 50 Гц. На контакте «A0» присутствует инвертированный относительно «D0» сигнал . В целом модуль срабатывает дискретно, как кнопка, в чем можно убедиться с помощью программы LED_with_button .

Датчик касания позволяет использовать в качестве кнопки управления любую металлическую поверхность, отсутствие движущихся частей должно положительно сказаться на долговечности и надежности.

Модуль датчика звука KY-037

Модуль должен срабатывать от звуков, громкость которых превышает заданный предел. Чувствительным элементом модуля является микрофон, работающий вместе с компаратором на микросхеме LM393YD .

Габариты модуля 42 х 15 х 13 мм, масса 3,4 г., аналогично предыдущему случаю в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1. Выводы питания «G» — общий провод, «+»– питание +5В.

Потребляемый ток 4,1 мА в ждущем режиме и 5 мА при срабатывании.

На выводе «A0» напряжение изменяется в соответствии уровнем громкости сигналов, принимаемых микрофоном, с повышением громкости показания уменьшаются, в этом можно убедиться с помощью программы AnalogInput2.

На цифровом входе «D0» присутствует низкий логический уровень, при превышении заданного порога низкий уровень меняется на высокий. Порог срабатывания можно регулировать переменным резистором. При этом загорается светодиод L2. При резком громком звуке наблюдается задержка в 1-2 с при обратном переключении.

В целом полезный датчик для организации системы умного дома или сигнализации.

Модуль датчика звука KY-038

С первого взгляда модуль кажется аналогичным предыдущему. Чувствительным элементом модуля является микрофон, следует отметить, что по данному модулю в сети не так уж много информации .

Габариты модуля 40 х 15 х 13 мм, масса 2,8 г., аналогично предыдущему случаю в плате модуля имеется крепежное отверстие диаметром 3 мм. Индикация питания осуществляется светодиодом L1. Выводы питания «G» — общий провод, «+»– питание +5В.

При срабатывании геркона загорается светодиод L2. Потребляемый ток 4,2 мА в ждущем режиме и до 6 мА при срабатывании.

На выводе «A0» при повышении уровня громкости происходит увеличение показаний (использована программа AnalogInput2).

На контакте «D0» присутствует низкий логический уровень, при срабатывании датчика он меняется на высокий. Порог срабатывания настраивается подстроечным резистором (использована программа LED_with_button).

Этот датчик действительно практически не отличается от предыдущего, но взаимозаменяемость их возможна не всегда, т.к. при изменении уровня громкости характер изменения уровня напряжение на аналоговом выходе различается.

Выводы

На этом автор заканчивает обзор большого набора из различных датчиков для аппаратной платформы Arduino. В целом данный набор произвел на автора смешанное впечатление. В набор входят как достаточно сложные датчики, так и совсем простые конструкции. И если в случае наличия на плате модуля токоограничительных резисторов, светодиодных индикаторов и т.п. автор готов признать полезность подобных модулей, то небольшая часть модулей представляет собой одиночный радиоэлемент на плате. Зачем нужны такие модули, остается непонятным (видимо крепление на стандартных платах служит целям унификации). В целом набор является неплохим способом познакомиться с большинством широко распространенных датчиков, применяемых в Arduino проектах.

Полезные ссылки

  1. http://arduino-kit.ru/catalog/id/modul-datchika-kasaniya
  2. http://www.zi-zi.ru/module/module-ky036
  3. http://robocraft.ru/blog/arduino/57.html
  4. http://arduino-kit.ru/catalog/id/modul-datchika-zvuka
  5. http://www.zi-zi.ru/module/module-ky037
  6. http://arduino-kit.ru/catalog/id/modul-datchika-zvuka_
  7. http://smart-boards.ml/module-audiovideo-4.php

Наверное уже никому в наше время не нужно объяснять, что такое тачпад? Этим удобным манипулятором снабжены все современные ноутбуки. Вместо джойстика или мышки, для перемещения курсора и кликов мы используем тачпад, или, по-научному, сенсорную панель.

В этом уроке мы будем работать с простым ёмкостным датчиком, который позволяет отследить всего одно касание (вот он, на рисунке справа). Наша задача, связать касание датчика пальцем с каким-нибудь действием, скажем, с излучением звука зуммером. Трогаем датчик — зуммер пищит. Не трогаем — молчит.

Для решения этой задачи нам понадобится соединить вместе контроллер Ардуино Уно, зуммер, и, собственно, сам датчик. В качестве последнего будем использовать небольшую платку на базе сенсорного чипа TTP223. Для питания устройства годится напряжение в диапазоне от 2 до 5.5 Вольт.

Данный датчик является цифровым, а значит он выдает только одно из двух возможных значений: истина или ложь. В электронике это соответствует высокому и низкому уровню напряжения, соответственно.

1. Подключение

Использованный нами в уроке ёмкостный датчик имеет три контакта:

  • VCC — питание +5В;
  • GND — земля;
  • OUT — сигнал.

Как и все прочие цифровые датчики, линию OUT мы подключаем к любому свободному цифровому входу Ардуино Уно. Традиционно, используем для работы с датчиком вход №2. Получившаяся схема будет иметь вид:

Внешний вид макета

2. Программа

Теперь попробуем оживить всё это. Все что нам потребуется — это считывать состояние вывода №2 на каждом такте программы, и в зависимости от полученного значения, включать или выключать зуммер. Вот что у нас получается:

Int capPin = 2; int buzzPin = 11; void setup() { pinMode(capPin, INPUT); pinMode(buzzPin, OUTPUT); } void loop() { if(digitalRead(capPin)) digitalWrite(buzzPin, HIGH); else digitalWrite(buzzPin, LOW); }

Наконец, записываем программу на Ардуино Уно, и смотрим что получилось!

Как известно, — любая металлическая поверхность, например, металлический предмет, пластина или дверная ручка. У сенсоров отсутствуют механические элементы, что в свою очередь придает им значительную надежность.

Сфера использования подобных устройств достаточно широка это и включение звонка, выключатель света, управление электронными устройствами, группа датчиков сигнализаций и прочее. Когда это необходимо, использование сенсорного датчика позволяет обеспечить скрытое размещение включателя.

Описание работы сенсорного датчика прикосновения

Функционирование ниже приведенной схемы сенсора основывается на применении имеющегося в домах электромагнитного поля, которое создает размещенная в стенах электропроводка.

Прикосновение к датчику сенсора рукой равносильно подсоединению антенны к чувствительному входу усилителя. В результате этого наведенное сетевое электричество поступает на затвор полевого транзистора, который играет роль электронного переключателя.

Данный сенсорный датчик прикосновения достаточно прост вследствие применения полевого транзистора КП501А (Б, В). Данный транзистор обеспечивает пропускание тока до180 мА при предельном напряжении исток-сток до 240В для буквы А и 200В для букв Б и В. Для защиты от статического электричества на его входе имеется диод.

Полевой транзистор обладает большим входным сопротивлением, и для того чтобы управлять им хватает статического напряжения, которое больше порогового значения. Для данного типа полевого транзистора номинальное пороговое напряжение составляет 1…3 В, а максимально допустимое равно 20 В.

При прикосновении рукой к датчику Е1, степень наведенного потенциала на затворе является достаточной для открывания транзистора. При этом на стоке VT1 будут электрические импульсы продолжительностью 35 мс, и имеющие частоту электрической сети 50 Гц. Для переключения большинства электромагнитных реле необходимо всего 3…25 мс. Для предотвращения дребезга контактов реле, в момент прикосновения, в схему включен конденсатор C2. За счет накопленного заряда на конденсаторе, реле будет включенным даже в тот полупериод сетевого напряжения, когда VT1 будет закрыт. Пока есть прикосновение к датчику сенсора, реле будет во включенном состоянии.

Конденсатор C1 увеличивает помехоустойчивость сенсора к высокочастотным радиопомехам. Менять чувствительность прикосновения к сенсору можно путем изменения емкости C1 и сопротивления R1. Группа контактов К1.1 осуществляет управление внешними электронными устройствами.

Добавив к данной схеме триггер и узел коммутации сетевой нагрузкой можно получить .