Потери в системах конденсации пара. Описание технологической схемы ТЭС


1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.

Потери пара и конденсата электростанций разделяются на внутренние и внешние. К вну­тренним относят потери от утечки пара и кон­денсата в системе оборудования и трубопро­водов самой электростанции, а также потери продувочной воды парогенераторов.

Для упрощения расчета потери от утечек условно сосредотачивают в линии свежего пара

Непрерывная продувка производимая для обеспечения надежной работы ПГ и получения пара требуемой чистоты.

D пр =(0,3-0,5)% D 0

D пр =(0,5-5)% D 0 -для химически очищенной воды

Для снижения продувки нужно повышать количество ПВ и понижать потери утечек.

Наличие потерь пара и конденсата приводит к понижению тепловой экономичности ЭС. Для восполнения потерь требований добавочная вода для подготовки которой необходимы дополнительные затраты. Поэтому потери пара и конденсата нужно понижать.

Например потери с продувочной водой нужно понижать с полного расширителя сепаратора продувочной воды.

Внутренние потери: D вт =D ут +D пр

D ут -потери от утечек

D пр -потери от продувочной воды

На КЭС: D вт ≤1%D 0

Отопит.ТЭЦ: D вт ≤1,2%D 0

Пром. ТЭЦ: D вт ≤1,6%D 0

Кроме D тв на ТЭЦ когда пар из отбора турбин прямо пропорционально направлен к промышленным потребителям.

D вн =(15-70)%D 0

На отопительных ТЭЦ теплота отпускаемая к потребителю по закрытой схеме чем пром. Паров. Теплообмен

Пар из отбора турбины конденсируется в теплообменнике промышленного типа и конденсат ГП возвращается в систему эл. Станции.

Вторичный теплоноситель нагревается и направляется к тепловому потребителю

В такой схеме внешние потери конденсата отсутствуют

В общем случае: D пот =D вт +D вн - ТЭЦ

КЭС и ТЭЦ с закрытой схемой D кот =D вт

Потери тепла D пр понижаются в охладителях продувочной воды. Охлаждается продувочная вода для подпитки тепловой сети и питательной установки.

20 Баланс пара и воды на тэс.

Для расчета тепловой схемы, определения расхода пара на турбины, производительности парогенераторов, энергетических показателей и т. п. необходимо установить, в частности, основные соотношения материального баланса пара и воды электростанции

    Материальный баланс парогенератора: D ПГ = D О + D УТ или D ПВ = D ПГ + D ПР.

    материальный баланс турбоустановки: D О = D К + D r + D П.

    Материальный баланс теплового потребителя: D П = D ОК + D ВН.

    Внутренние потери пара и конденсата: D ВНУТ = D УТ + D" ПР.

    Материальный баланс для питательной воды: D ПВ = D К + D r + D ОК +D" П + D ДВ.

    Добавочная вода должна покрывать внутренние и внешние потери:

D ДВ = D ВНУТ + D ВН = D УТ + D" ПР + D ВН

Рассмотрим сепаратор-расширитель продувочной воды

р с <р пг

h пр =h / (р пг)

h // п =h // (р с)

h / пр =h / (р с)

Составляется тепловой и материальный баланс сепаратора

Теплов.: D пр h пр =D / п h // п +D / пр h / пр

D / пр =D пр (h пр -h / пр)/ h // п -h / пр

D / п = β / п D пр; β / п ≈0,3

D / пр =(1-β / п) D пр

Расчетный расход продувочной воды определяется из материального баланса примен. С пв (кг/т)- концентрация примесей в ПВ

С пг -допустимая концентрация примесей в котловой воде

С п -концентрация примесей в паре

D ПВ = D ПГ + D ПР – материальный баланс

D ПВ С п = D ПР - С пг + D ПГ С п

D ПР = D ПГ * ; D ПР = ; α пр =D пр /D 0 =

Чем выше количество ПВ то С пг /С ув →∞ и тогда α пр →0

Количество ПВ зависит от количества добавочной.

В случае прямоточных ПГ продувка воды не осуществляется и ПВ должна быть особенно чистой.

Потери в системах конденсации пара

    А. Пролетный пар , вызываемый отсутствием или отказом конденсатоотводчика (к.о.). Самым существенным источником потерь является пролетный пар. Классическим примером неверно понимаемой системы является преднамеренный отказ от установки к.о. в так называемых закрытых системах, когда пар всегда где-то конденсируется и возвращается в котельную.
В этих случаях отсутствие видимых утечек пара создает иллюзию полной утилизации скрытой теплоты в паре. Фактически же скрытая теплота в паре, как правило, не выделяется вся на теплообменных агрегатах, а ее значительная часть расходуется на нагрев конденсатопровода или выбрасывается в атмосферу вместе с паром вторичного вскипания. Конденсатоотводчик позволяет полностью утилизировать скрытую теплоту в паре при данном давлении. В среднем потери от пролетного пара составляют 20-30%.

Б. Утечки пара , вызываемые периодической продувкой систем пароиспользования (СПИ), при нерегулируемом отводе конденсата, неправильно выбранном к.о. или его отсутствии.

Данные потери особенно велики при пуске и прогреве СПИ. «Экономия» на к.о. и их установка с недостаточной пропускной способностью, необходимой для автоматического отвода повышенного объема конденсата, приводят к необходимости открытия байпасов или сбросу конденсата в дренаж. Время прогрева систем увеличивается в несколько раз, потери очевидны. Поэтому к.о. должен иметь достаточный запас по пропускной способности, чтобы обеспечить отвод конденсата при пусковых и переходных режимах. В зависимости от типов теплообменного оборудования запас по пропускной способности может составлять от 2-х до 5.

Чтобы избежать гидроударов и непроизводительных ручных продувок, следует обеспечивать автоматический дренаж конденсата при остановах СПИ или при колебаниях нагрузок с помощью установки к.о. с разными диапазонами рабочих давлений, промежуточных станций сбора и перекачки конденсата или принудительной автоматической продувки теплообменных агрегатов. Конкретная реализация зависит от фактических технико-экономических условий. В частности, следует иметь в виду, что к.о. с перевернутым стаканом при перепаде давления, превышающим его рабочий диапазон, закрывается. Поэтому схема автоматического дренажа теплообменника при падении давления пара, приведенная ниже, является просто реализуемой, надежной и эффективной.

Следует иметь в виду, что потери пара через нерегулируемые отверстия непрерывны, и любые средства имитации к.о. нерегулируемыми устройствами типа «прикрытый вентиль», гидрозатвор и т.п. в конечном итоге приводят к большим потерям, чем первоначальный выигрыш. В табл.1 приведен пример количества пара, безвозвратно теряемого за счет утечек через отверстия при различных давлениях пара.


    Таблица 1. Утечки пара через отверстия различного диаметра

    Давление. бари

    Условный диаметр отверстия

    Потери пара, тонн / мес

    21/8" (3.2 мм)

    ¼" (6.4 мм)

    15.1

    ½" (25 мм)

    61.2

    81/8" (3.2 мм)

    11.5

    ¼" (6.4 мм)

    41.7

    ½" (25 мм)

    183.6

    105/64" (1.9 мм)

    #38 (2.5 мм)

    14.4

    1/8" (3.2 мм)

    21.6

    205/64" (1.9 мм)

    16.6

    #38 (2.5 мм)

    27.4

    1/8" (3.2 мм)

    41.8

В. Невозврат конденсата при отсутствии системы сбора и возврата конденсата.

Неконтролируемый сброс конденсата в дренаж не может быть оправдан ничем, кроме как недостаточным контролем за водоотведением. Затраты на химводоподготовку, забор питьевой воды и тепловая энергия в горячем конденсате учтены в расчете потерь, представленном на сайте:

Исходные данные для расчета потерь при не возврате конденсата приняты следующие: стоимость холодной воды на подпитке, химикатов, газа и электроэнергии.
Следует иметь в виду также потерю внешнего вида зданий и, более того, разрушение ограждающих конструкций при постоянном «парении» дренажных точек.

Г. Присутствие воздуха и неконденсируемых газов в паре

Воздух, как известно, обладает отличными теплоизоляционными свойствами и по мере конденсации пара может образовывать на внутренних поверхностях теплообмена своеобразное покрытие, препятствующее эффективности теплообмена (табл.2).

Табл. 2. Снижение температуры паровоздушной смеси в зависимости от содержания воздуха.

    Давление Температура насыщенного пара Температура паровоздушной смеси в зависимости от количества воздуха по объему, °С

    Бар абс.

    °С

    10%20%30%

    120,2

    116,7113,0110,0

    143,6

    140,0135,5131,1

    158,8

    154,5150,3145,1

    170,4

    165,9161,3155,9

    179,9

    175,4170,4165,0


Психрометрические диаграммы позволяют определить процентное отношение количества воздуха в паре при известном давлении и температуре путем нахождения точки пересечения кривых давления, температуры и процентного содержания воздуха. Например, при давлении в системе 9 бар абс. и температуре в теплообменнике 160 °С по диаграмме находим, что в паре содержится 30% воздуха.

Выделение СО2 в газообразной форме при конденсации пара ведет при наличии влаги в трубопроводе к образованию крайне вредной для металлов угольной кислоты, которая является основной причиной коррозии трубопроводов и теплообменного оборудования. С другой стороны, оперативная дегазация оборудования, являясь эффективным средством борьбы с коррозией металлов, выбрасывает СО2 в атмосферу и способствует формированию парникового эффекта. Только снижение потребления пара является кардинальным путем борьбы с выбросами СО2 и рациональное применение к.о. является здесь наиболее эффективным оружием. Д. Неиспользование пара вторичного вскипания .


При значительных объемах пара вторичного вскипания следует оценивать возможность его непосредственного использования в системах, имеющих постоянную тепловую нагрузку. В табл. 3 приведен расчет образования пара вторичного вскипания.
Пар вторичного вскипания является следствием перемещения горячего конденсата под высоким давлением в емкость или трубопровод, находящийся под меньшим давлением. Типичным примером является "парящий" атмосферный конденсатный бак, когда скрытая теплота в конденсате высокого давления высвобождается при более низкой температуре кипения.
При значительных объемах пара вторичного вскипания следует оценивать возможность его непосредственного использования в системах, имеющих постоянную тепловую нагрузку.
На номограмме 1 приведена доля вторичного пара в % от объема конденсата, вскипающего в зависимости от перепада давлений, испытываемого конденсатом. Номограмма 1. Расчет пара вторичного вскипания.
Е. Использование перегретого пара вместо сухого насыщенного пара.

Если технологические ограничения не требуют использования перегретого пара высокого давления, следует всегда стремиться к применению насыщенного сухого пара возможно самого низкого давления.
Это позволяет использовать всю скрытую теплоту парообразования, которая имеет более высокие значения при низких давлениях, добиться устойчивых процессов теплопередачи, снизить нагрузки на оборудование, увеличить срок службы агрегатов, арматуры и трубных соединений.
Применение влажного пара имеет место, как исключение, только при его использовании в конечном продукте, в частности, при увлажнении материалов. Поэтому целесообразно использовать в таких случая специальные средства увлажнения на последних этапах транспортировки пара к продукту.

Ж. Невнимание к принципу необходимого разнообразия
Невнимание к разнообразию возможных схем автоматического управления, зависящих от конкретных условий применения, консерватизм и стремление использовать типовую схему может быть источником непреднамеренных потерь.

З. Термоудары и гидроудары.
Термо- и гидроудары разрушают системы пароиспользования при неправильно организованной системе сбора и отвода конденсата. Использование пара невозможно без тщательного учета всех факторов его конденсации и транспортировки, влияющих не только на эффективность, но и на работоспособность, и на безопасность ПКС в целом.

Восполнение потерь пара и воды на ТЭС

На ТЭС при Ро ≥ 8,8 МПа (90 Атм) восполнение потерь осуществляется полностью обессоленной добавочной водой.

На ТЭС при Ро ≤ 8,8 МПа применяется химическая очистка добавочной воды – удаление катионов жёсткости, замещение их на катионы натрия, с сохранением остатков кислот (анионов).

Подготовка обессоленной воды ведётся тремя способами:

1. Химический метод

2. Термический метод

3. Комбинированные физико-химические методы (использование элементов химической очистки, диализного, мембранного)

Химический метод подготовки добавочной воды

В поверхностных водах имеются грубодисперсные, коллоидные и истинно растворённые примеси.

Вся система химической водоподготовки делится на две стадии:

1) Предочистка воды

2) Очистка от истинно растворённых примесей

1. Предочистка производится в осветлителях воды. При этом удаляются грубодиспергированные коллоидные примеси. Происходит замещение магниевой жёсткости на кальциевую и осуществляется магнезиональное обескремнивание воды.

Al 2 (SO 4) 3 или Fe(SO 4) – коагулянты

MgO+H 2 SiO 3 → MgSiO 3 ↓ + H 2 O

После предочистки вода содержит только истинно растворённые примеси

2. Очистка от истинно растворённых примесей осуществляется с помощью ионитных фильтров.

1) Н – катионитовый фильтр

Вода походит две ступени Н – катионитовых фильтров, затем одна одна ступень анионитового фильтра.

Декарбонизатор – улавливание СО 2 . После Н – катионитового и ОН – анионитового в воде слабые кислоты Н 2 CO 3 , H 3 РO 4 , H 2 SiO 3 при этом СO 2 переходит в свободную форму и далее вода идёт на декарбонизатор, в котором СО 2 удаляется физическим способом.



Закон Генри – Дальтона

Количество данного газа, растворённого в воде прямопропорционально парциальному давлению этого газа над водой.

В декарбонизаторе за сёт того, что концентрация СО 2 в воздухе приблизительно равна нулю, СО 2 из воды выделяется в декарбонизаторе.

Остатки слабых кислот (РО 4 , СО 2 , SiO 3) улавливаются на сильном анионитовом фильтре.

Термический метод обессоливания добавочной воды

Основан на том явлении, что растворимость солей в паре при малых давлениях очень мала.

Термическая подготовка добавочной воды осуществляется в испарителях.

Количество пара, идущего в одноступенчатой схеме приблизительно равен очищенному.

Принципиальные тепловые схемы отпуска пара и тепла с ТЭЦ.

Отпуск тепла с ТЭЦ.

Всех потребителей тепла можно разделить на 2 категории:

1. расход тепла (потребление) зависит от климатических условий (отопление и вентиляция);

2. расход тепла не зависит от климатических условий (горячая вода).

Тепло может отпускаться в виде пара, либо в виде горячей воды. Вода как теплоноситель для отопления имеет преимущества перед паром (нужен меньше диаметр труб + меньше потерь). Вода готовится в сетевых подогревателях (основных и пиковых). Пар же отпускается только на технологические нужды. Он может отпускаться непосредственно из отбора турбины либо через паропреобразователь.

При расчете расход тепла на отопление учитывается:

– площадь квартиры

– разница температуры на улице и в доме

– отопительная характеристика здания

Q = Væ (t внутр – t наруж)

[ккал/ч] = [м 3 ]*[ккал/м 3 ·ч·ºС]*[ºС]

где Q – расход тепла в единицу времени Гкал/ч или ккал/ч

æ (каппа) – сколько тепла теряется 1 м 3 здания в единицу времени при изменении тепла на 1 градус. Изменяется в пределах от 0,45 до 0,75


Отопление

Вентиляция

18 +8-10 -26 t пара, o C

Рисунок 55.

Годовой отпуск тепла на отопление .

Пиковая часть

Отопление

Основная часть

Горячая вода

0 550 5500 8760 n

количество часов, где пиковая нагрузка

Рисунок 56.

Для расчета тепла со станции на отопление используются коэффициенты теплофикации:

α ТЭЦ = Q отбор /Q сети

где Q отбор – то количество тепла, которое мы отбираем из отбора турбины

Q сети – то количество тепла, которое мы должны сообщить сетевой воде на станции

Схема отпуска тепла с ТЭЦ

Теплоподготовительные системы (ТПС):

Теплофикационная установка (ТУ)

Общестанционная установка (ОУ)

Существуют 2 вида ТПС:

1) для ТЭЦ с турбинами мощностью 25 МВт и меньше, а так же ГРЭС большой мощности. Для этого типа ТПС теплофикационная установка турбины состоит из основного и пикового подогревателя, а общие станционные установки включают: сетевые насосы, установки по умягчению подпиточной воды, насосы и деаэраторы подпиточной воды

2) для ТЭЦ с турбинами мощность которых больше 50 МВт. Для этого типа теплофикационные установки турбины состоят из 2-х последовательно включенных основных подогревателей (верхний и нижний) и насосов сетевой воды с 2-ч ступенчатой перекачкой: 1 насос стоит до нижнего основного подогревателя, а насос 2-ой ступени – после верхнего основного подогревателя. Обще станционные установки состоят из пикового водогрейного котла (ПВК), установок по умягчению подпиточной воды, деаэраторов и насосов подпиточной воды.

Схема теплофикационной установки первого типа.

Рисунок 57.

РОУ – редукционно-охладительная установка

Температура сетевой воды зависит от температуры наружного воздуха. Если температура наружного воздуха = 26 градусам, то на выходе из пикового подогревателя температура сетевой воды должна быть приблизительно 135 –150 ºС

Температура сетевой воды на входе в основной подогреватель ≈ 70 ºС

Конденсат редуцированного пара из пикового подогревателя сливается в основной подогреватель и далее проходит путь вместе с конденсатом греющего пара.

14. Коэффициент теплофикации α ТЭЦ. Способы покрытия пиковой тепловой нагрузки на ТЭЦ.

Потери рабочего тела: пара, основного конденсата и питательной воды на ТЭС можно разделить на внутренние и внешние . К внутренним – относят потери рабочего тела через не плотности фланцевых соединений и арматуры; потери пара через предохранительные клапаны; утечку дренажа паропроводов; расход пара на обдувку поверхностей нагрева, на разогрев мазута и на форсунки. Эти потери сопровождаются потерей теплоты, их принято обозначать величиной или выражать (для конденсационных турбоустановок) в долях расхода пара на турбину . Внутренние потери пара и конденсата не должны превышать при номинальной нагрузке 1,0 % на КЭС и 1,2÷ 1,6 на ТЭЦ. На Тепловых электрических станциях (ТЭС) с прямоточными энергетическими котлами эти потери с учетом периодических водно-химических отмывок могут быть больше на 0,3 ÷ 0,5 %. При сжигании мазута в качестве основного топлива, потери конденсата увеличиваются на 6 % в летнее время и на 16 % в зимнее время.

Для уменьшения внутренних потерь по возможности фланцевые соединения заменяют сварными, организуют сбор и использование дренажа, следят за плотностью арматуры и предохранительных клапанов, заменяют, где возможно предохранительные клапаны на диафрагмы.

На ТЭС до критического давления, с барабанными котлами основную часть внутренних потерь составляют потери с продувочной водой .

Внешние потери имеют место при отпуске технологического пара внешнему потребителю из турбин и энергетических парогенераторов (ПГ), когда часть конденсата этого пара не возвращается на ТЭЦ .

На ряде предприятий химической и нефтехимической промышленности потери конденсата технологического пара могут составить до 70 %.

Внутренние потери имеют место на конденсационных электростанциях (КЭС) и на теплоэлектроцентралях (ТЭЦ). Внешние потери имеют место только на ТЭЦ с отпуском технологического пара на промышленные предприятия.

Конец работы -

Эта тема принадлежит разделу:

По курсу ТЦПЭЭ и Т 7 семестр, 36 часов лекция 18 лекции

По курсу тцпээ и т семестр часов.. лекция потери пара и конденсата и их восполнение потери пара и конденсата..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Баланс пара и воды
Воду, вводимую в питательную систему энергетических котлов для восполнения потерь рабочего тела (теплоносителя), называют добавочной водой

Назначение и принцип действия расширителей продувки
Добавочная вода, несмотря на то, что она предварительно очищается, вносит в цикл ТЭС соли и другие химические соединения. Значительная доля солей поступает также через не плотности

Химические методы подготовки добавочной и подпиточной воды
На промышленные ТЭС вода обычно поступает из общей системы водоснабжения предприятия, из которой предварительно удаляются механические примеси путем отстаивания, коагуляции и фильтр

Термическая подготовка добавочной воды парогенераторов в испарителях
В связи с проблемой охраны окружающей среды от вредных выбросов производств, применение химических методов водоподготовки все более затрудняется ввиду запрета сброса отмывочных вод в водоемы. В это

Расчет испарительной установки
Схема к расчету испарительной установки показана на рис. 8.4.3. Расчетиспарительной установки заключается в определении расхода первичного пара из отбора турбины

Отпуск пара внешним потребителям
От теплоэлектроцентрали (ТЭЦ) к потребителю тепло подается в виде пара или горячей воды, называемых теплоносителями. Промышленные предприятия потребляют для технологических нужд пар

Одно-, двух- и трехтрубная системы пароснабжения от ТЭЦ
На большинстве предприятий необходим пар 0,6 – 1,8 МПа, а иногда 3,5 и 9 МПа, который подается к потребителям от ТЭЦ паропроводами. Прокладка индивидуальных паропроводов к каждому потребителю вызыв

Редукционно-охладительная установка
Для снижения давления и температуры пара применяются редукционно-охладительные установки (РОУ). Установки используются на ТЭС для резервирования отборов и противодавления тур

Отпуск тепла на отопление, вентиляцию и бытовые нужды
Для отопления, вентиляции и бытовых нужд в качестве теплоносителя применяется горячая вода. Систему трубопроводов, по которым горячая вода подается к потребителям, а охлажденная возвращает

Отпуск тепла на отопление
Сетевая установка ГРЭС обычно состоит из двух подогревателей – основного и пикового рис. 9.2.1.

Конструкции сетевых подогревателей и водогрейных котлов
Качество сетевой воды, прокачиваемой через поверхности нагрева сетевых подогревателей, значительно ниже качества конденсата турбин. В ней могут присутствовать продукты коррозии, соли жесткости и др

ЛЕКЦИЯ 24
(продолжение лекции 23) Водогрейные котлы, как и пиковые сетевые подогреватели, используются на ТЭЦ в качестве пиковых источников теплоты при тепловых нагрузках, превышающих обеспеч

Деаэраторы, питательные и конденсатные насосы
Деаэрационно-питательную установку можно условно разделить на две – деаэрационную и питательную. Начнем рассмотрение с деаэрационной установки. Назначен

ЛЕКЦИЯ 26
(продолжение лекции 25) Каково назначение питательной установки? Зачем устанавливается бустерный насос? Каковы возможные схемы включения питательных насосов?

Общие положения расчета принципиальных тепловых схем
1. РАСЧЁТ ТЕПЛОВОЙ СХЕМЫ Т-110/120-130 (на номинальном режиме работы) Параметры турбоустановки: N0 = 11

Расчет расхода воды теплосети
Энтальпия сетевой воды на входе в ПСГ-1 определяется при tос = 35 0С и давление на выходе из сетевого насоса, равном 0,78 МПа, получаем hос = 148 кД

Расчет подогрева воды в питательном насосе
Давление питательной воды на выходе из питательного насоса оценивается величиной, на 30 - 40% больше давления свежего пара р0 ; Принимаем 35 %:

Термодинамические параметры пара и конденсата (номинальный режим работы)
Таб. 1.1 Точка Пар в отборах турбины Пар у регенеративных подогревателей Обогреваемая

ЛЕКЦИЯ 29
(продолжение лекции 28) 1.4.3 Расчет ПНД Произвотится совместный расчет группы ПНД-4,5,6.

Конденсационные установки
Каковы назначение и состав конденсационной установки? Как выбираются конденсатные насосы? Конденсационная установка (рис. 26) обеспечивает создание и поддерж

Системы технического водоснабжения
Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на ТЭС и АЭС? Системой технического водоснабжения

Топливное хозяйство ЭС и котельных
Подготовка угля к сжиганию включает в себя следующие стадии: - взвешивание на вагонных весах и разгрузка с помощью вагоноопрокидывателей; если уголь при транспортировке смерз

Технические решения по предотвращению загрязнения окружающей среды
ОЧИСТКА ДЫ’ОВЫХ ГАЗОВ Содержащиеся в дымовых газах летучая зола, частицы несгоревшего топлива, окислы азота, сернистые газы загрязняют атмосферу и оказывают вредное влияни

Вопросы эксплуатации электростанций
Основные требования к работе ТЭС и АЭС – это обеспечение надежности, безопасности и экономичности их эксплуатации. Надежность означает обеспечение бесперебойного (непр

Выбор места строительства ТЭС и АЭС
Каковы основные требования к месту строительства электростанции? Каковы особенности выбора места строительства АЭС? Что такое роза ветров в районе размещения станции? Снач

Генеральный план электростанции
Что такое генеральный план электростанции? Что показывается на генеральном плане? Генеральный план (ГП) представляет собой вид сверху на площадку электростан

Компоновка главного здания ТЭС и АЭС
Какова структура главного здания ТЭС и АЭС? Каковы основные принципы компоновки главного здания электростанции, какие количественные показатели характеризуют совершенство компоновки? Какие