Материала и делают его прочнее. Что является самым прочным материалом в мире? Самый твердый из металлов


Самые лёгкие и необычайно прочные материалы называют будущим строительства. Эти материалы помогут создавать более энергоэффективные и экологически чистые объекты во всех сферах жизни людей - от медицинских технологий до транспорта.

Среди множества инновационных материалов, которые не так давно казались просто фантастикой, особо передовыми и перспективными являются:

3D-графен

Созданный из чистого углерода этот ультратонкий графен считается одним из самых прочных материалов на Земле. Но недавно исследователи из Массачусетского технологического института смогли превратить двухмерный графен в трёхмерную структуру. Они создали новый материал с губчатой структурой. Плотность 3D-графена равна всего 5 процентам от плотности стали, но благодаря особой структуре он в 10 раз прочнее стали.

По словам создателей, 3D-графен имеет большой потенциал применения во многих областях.

Что касается его технологии создания, то её можно применить и для других материалов, от полимеров до конструкционного бетона. Это позволит не только производить структуры, которые прочнее и легче, но и имеющие повышенные изоляционные свойства. Кроме того, пористые структуры могут быть использованы в системах фильтрации воды или отходов химических заводов.

Карбин

Весной прошлого года группа австрийских исследователей успешно синтезировала карбин (Carbyne) - форму углерода, которая является самой прочной из всех известных материалов и даже превосходит графен.

Карбин состоит из одномерной цепочки атомов углерода, которая химически активна, что делает её очень сложной для синтеза. Считается, что негибкий материал в два раза прочнее углеродных нанотрубок. Карбин может применяться в наномеханике, нано- и микроэлектронике.

Аэрографит

Созданный из сети пористых углеродных трубок, аэрографит представляет собой синтетическую пену. Это один из самых лёгких конструкционных материалов, созданных когда-либо. Аэрографит разработали исследователи из Университета Киля и Технического университета Гамбурга. Аэрографит может быть изготовлен в различных формах, его плотность всего 180 г/м 3 , что в 75 раз легче, чем пенополистирол. Этот материал можно использовать в электродах литий-ионных батарей, чтобы уменьшить их вес.

Аэрографен

Известный также как графен-аэрогель, это лёгкий материал с плотностью всего 0,16 млг/см 3 , что в 7,5 раза меньше плотности воздуха. К тому же это очень эластичный материал, и он способен поглотить до 900 раз больше масел и воды, чем весит сам. Это свойство аэрографена очень важно: он сможет поглощать разливы нефти в океанах.

Подобными свойствами обладает , которая уже тестируется исследователями из Аргонны.

Всем известно, что на настоящий момент алмаз является эталоном твёрдости, т.е. при определении твёрдости материала за основу берется показатель твёрдости алмаза. В нашей статье мы рассмотрим десять самых твёрдых материалов в мире и посмотрим насколько они тверды относительно алмаза. Материал считается сверхтвёрдым если его показатели находятся выше 40 ГПа. Нужно учесть, что твёрдость материала может колебаться в зависимости от внешних факторов, в частности от приложенной к нему нагрузки. Итак, представляем десять самых твёрдых материалов в мире.

10. Субоксид бора

Субоксид бора состоит из зёрен имеющих форму выпуклых двадцатигранников. Эти зёрна состоят, в свою очередь, из двадцати кристаллов-многогранников, гранями которого являются четыре треугольника. Субоксид бора имеет повышенную прочность в 45 ГПа.

9. Диборид рения

Диборид рения очень интересный материал. При малых нагрузках он ведет себя как сверхтвёрдый, имея прочность в 48 ГПа, а при нагрузке его твердость снижается до 22 ГПа. Этот факт вызывает бурные дискуссии у ученых всего мира относительно того стоит ли считать диборид рения сверхтвёрдым материалом.

8. Борид магния-алюминия

Борид магния-алюминия составляет собой сплав алюминия, магния и бора. Этот материал имеет невероятно низкие показатели трения скольжения. Это уникальное свойство могло бы стать настоящей находкой в производстве разнообразных механизмов, ведь детали из борида магния-алюминия способны работать без смазки. К сожалению, сплав невероятно дорог, что на данный момент закрывает ему дорогу к широкому применению. Твердость борид магния-алюминия — 51 ГПа.

7. Бор-углерод-кремний

Соединение Бор-углерод-кремний обладает невероятной устойчивостью к высочайшим температурам и химическому воздействию. Твердость Бор-углерод-кремния — 70 ГПа.

6. Карбид бора

Карбид бора был открыт еще в 18 веке и начал использоваться почти сразу во многих отраслях промышленности. Его используют при обработке металлов и сплавов, при изготовлении химической посуды, а также в энергетике и электронике. Используется как основное вещество для пластин бронежилетов. Твердость карбида бора составляет 49 ГПа, а добавляя в него аргон в виде ионов, можно увеличить этот показатель до 72 ГПа.

5. Нитрид углерода-бора

Нитрид углерода-бора является одним из представителей достижений современной химии, он был синтезирован сравнительно недавно Твердость нитрид углерода-бора — 76 ГПа.

4. Наноструктурированный кубонит

Наноструктурированный кубонит имеет и другие названия: кингсонгит, боразон или эльбор. Материал обладает показателями твёрдости близкими к алмазу и успешно применяется в промышленности при обработке различных металлов и сплавов. Твердость наноструктурированного кубонита — 108 ГПа.

3. Вюртцитный нитрид бора

Структура кристаллов этого вещества имеет особую вюрцитную форму, она то и позволяет быть ему одним из лидеров по твёрдости. При приложении нагрузки связи между атомами в кристаллической решётке перераспределяются и твёрдость материала повышается почти на 75%! Твердость вюрцитного нитрида бора — 114 ГПа.

2. Лонсдейлит

Лонсдейлит по своей структуре очень похож на алмаз, ведь они оба являются аллотропными модификациями углерода. Лонсдейлит был обнаружен в воронке метеорита, одним из компонентов которого являлся графит . По всей видимости от нагрузок, вызванных взрывом метеорите, графит превратился в лонсдейлит. При обнаружении лонсдейлит не продемонстрировал особых чемпионских показателей твёрдости, однако было доказано, что при отсутствии в нём примесей, он будет твёрже алмаза! Доказанный показатель твердости лонсдейлита — до 152 ГПа

1. Фуллерит

Пришло время рассмотреть самое твёрдое вещество в мире — фуллерит. Фуллерит — это кристалл, который состоит из молекул, а не из отдельных атомов. Благодаря этому фуллерит обладает феноменальной твердостью, он способен легко царапать алмаз, также как сталь царапает пластик! Твердость фуллерита — 310 ГПа.

Фуллерит

Мы привели список самых твёрдых материалов в мире на данный момент. Как видим, среди них достаточно веществ твёрже алмаза и,возможно, нас ждут впереди ещё новые открытия, которые позволят получить материалы с ещё более высокими показателями твёрдости!

В своей деятельности человек использует различные качества веществ и материалов. И совсем не маловажным является их крепость и надежность. О самых твердых материалах в природе и созданных искусственно пойдет речь в этой статье.

Общепринятый эталон

Для определения прочности материала используется шкала Мооса - шкала оценки твердости материала по его реакции на царапание. Для обывателя самый твердый материал - это алмаз. Вы удивитесь, но этот минерал всего лишь где-то на 10-м месте среди самых твердых. В среднем материал считают сверхтвердым, если его показатели выше 40 ГПа. Кроме того, при выявлении самого твердого материала в мире следует учитывать и природу его происхождения. При этом крепость и прочность часто зависят от воздействия внешних факторов на него.

Самый твердый материал на Земле

В данном разделе обратим внимание на химические соединения с необычной кристаллической структурой, которые намного прочнее алмазов и вполне могут его поцарапать. Приведем топ-6 самых твердых материалов созданных человеком, начиная с наименее твердого.

  • Нитрид углерода - бора. Это достижение современной химии имеет показатель прочности 76 ГПа.
  • Графеновый аэрогель (аэрографен) - материал в 7 раз легче воздуха, восстанавливающий форму после 90 % сжатия. Удивительно прочный материал, способный к тому же впитать количество жидкости или даже масла в 900 раз больше собственного веса. Этот материал планируется использовать при разливах нефти.
  • Графен - уникальное изобретение и самый прочный материал во Вселенной. О нем ниже чуть подробнее.
  • Карбин - линейный полимер аллотропного углерода, из которого делают супертонкие (в 1 атом) и суперпрочные трубки. Долгое время никому не удавалось построить такую трубку длиною более чем 100 атомов. Но австрийским ученым из Венского Университета удалось преодолеть этот барьер. Кроме того, если раньше карбин синтезировался в малых количествах и был очень дорогой, то сегодня появилась возможность синтезировать его тоннами. Это открывает новые горизонты для космотехники и не только.
  • Эльбор (кингсонгит, кубонит, боразон) - это наноконструированное соединение, которое сегодня широко применяется в обработке металлов. Твердость - 108 ГПа.

  • Фуллерит - вот какой самый твердый материал на Земле, известный человеку сегодня. Его прочность в 310 ГПа обеспечивается тем, что он состоит не из отдельных атомов, а из молекул. Эти кристаллы с легкостью поцарапают алмаз, как нож масло.

Чудо рук человеческих

Графен - еще одно изобретение человечества на основе аллотропных модификаций углерода. С виду - тонкая пленка толщиной в один атом, но в 200 раз прочнее стали, обладающая исключительной гибкостью.

Именно о графене говорят, что, чтобы его проткнуть, на кончике карандаша должен стоять слон. При этом его электропроводность выше кремния компьютерных чипов в 100 раз. Очень скоро он покинет лаборатории и войдет в повседневную жизнь в виде солнечных панелей, сотовых телефонов и чипов современных компьютеров.

Два очень редких результата аномалий в природе

В природе встречаются очень редкие соединения, которые обладают невероятной прочностью.

  • Нитрид бора - вещество, кристаллы которого имеют специфическую вюрцитную форму. С приложением нагрузок соединения между атомами в кристаллической решетке перераспределяются, повышая прочность на 75 %. Показатель твердости - 114 ГПа. Образуется это вещество при вулканических извержениях, в природе его очень мало.
  • Лонсдейлит (на главном фото) - соединение аллотропного углерода. Материал был обнаружен в воронке метеорита, считается, что он образовался из графита под воздействием условий взрыва. Показатель твердости - 152 ГПа. В природе встречается редко.

Чудеса живой природы

Среди живых существ на нашей планете есть такие, у которых имеется что-то совершенно особенное.

  • Паутина Caerostris darwini. Нить, которую выделяет паук Дарвина, прочнее стали и тверже кевлара. Именно эта паутина была взята учеными НАСА на вооружение при разработке космических защитных костюмов.
  • Зубы моллюска Морское блюдечко - их волокнистая структура сегодня изучается бионикой. Они настолько прочные, что позволяют моллюску отодрать водоросли, вросшие в камень.

Железная береза

Еще одно чудо природы - береза Шмидта. Ее древесина - самый твердый биологического происхождения. Растет она на Дальнем Востоке в заповеднике Кедровая Падь и внесена в Красную Книгу. Прочность сравнима с железом и чугуном. Но при этом не подвержена коррозии и гниению.

Повсеместному использованию древесины которую не пробивают даже пули, препятствует ее исключительная редкость.

Самый твердый из металлов

Это металл бело-голубого цвета - хром. Но его прочность зависит от его чистоты. В природе его содержится 0,02 %, что совсем не так мало. Добывают его из силикатных горных пород. Много хрома содержат и падающие на Землю метеориты.

Он коррозионностойкий, жаропрочный и тугоплавкий. Хром входит в состав многих сплавов (хромистая сталь, нихром), которые широко используются в промышленности и в антикоррозийных декоративных покрытиях.

Вместе прочнее

Один металл - это хорошо, но в некоторых сочетаниях возможно придание сплаву удивительных свойств.

Сверхпрочный сплав титана и золота - единственный крепкий материал, который оказался биосовместимым с живыми тканями. Сплав beta-Ti3Au настолько прочный, что его невозможно измельчить в ступке. Уже сегодня ясно, что это будущее различных имплантатов, искусственных суставов и костей. Кроме того, он может быть применен в буровом производстве, изготовлении спортивного снаряжения и во многих других областях нашей жизни.

Подобными свойствами может обладать и сплав палладия, серебра и некоторых металлоидов. Над этим проектом сегодня работают ученые института Калтека.

Будущее по 20 долларов за моток

Какой самый твердый материал уже сегодня может купить любой обыватель? Всего за 20 долларов можно купить 6 метров ленты Braeön. С 2017 года она поступила в продажу от производителя Дастина Маквильямса. Химический состав и способ производства хранятся в строгом секрете, но качества ее поражают.

Лентой можно скрепить абсолютно все. Для этого ее необходимо обмотать вокруг скрепляемых деталей, разогреть обычной зажигалкой, придать пластичному составу нужную форму и все. После остывания стык выдержит нагрузку в 1 тонну.

И твердый, и мягкий

В 2017 году появилась информация о создании удивительного материала - самого твердого и самого мягкого одновременно. Этот метаматериал изобрели ученые из Университета Мичиган. Им удалось научиться управлять структурой материала и заставлять его проявлять различные свойства.

Например, при использовании его для создания автомобилей при движении кузов будет обладать жесткостью, а при столкновении - мягкостью. Кузов абсорбирует энергию соприкосновения и защитит пассажира.

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз - крепчайший минерал, но он далеко не самый крепкий.

Твёрдость - не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие - способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 - самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.

Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.

Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.

Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.

Вольфрамовое сверло

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.

Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.

Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).

Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!

Трубка сплава

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.

Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.

Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.

Раковина блюдца

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.

Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.

Кристалл осмия

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).

Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар - это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.

Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.

Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!

Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.

в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.

Модель нанотрубок

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.

Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.

Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.

место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.

Метеориты - главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Многим из нас хорошо известны основные свойства например обычной фанеры – ее прочность, жесткость, стабильность и размеры.

Но, скорее всего, вы мало знакомы со свойствами других листовых материалов, появившихся в последние годы.

Неважно, какой проект вам предстоит изготовить, – мы поможем найти материал, идеально подходящий для ваших задач.

Улучшенные свойства благодаря современным разработкам

Все листовые и плитные материалы, включая фанеру, относятся к обширной категории искусственных древесных материалов. В отличие от натуральной, природной древесины, когда доски и брусья просто выпиливаются из древесного ствола и высушиваются, искусственные материалы получают путем дальнейшей обработки, добиваясь улучшения или изменения некоторых свойств.

Например, фанера состоит из множества тонких слоев, склеенных друг с другом так, что направление волокон каждого слоя перпендикулярно соседним. Это увеличивает прочность, уменьшает колебания размеров и позволяет использовать древесину с красивой текстурой только на внешних слоях.

Хотя фанера до сих пор доминирует на рынке, появляется все больше новых листовых материалов, производимых из стружки, опилок или размолотой в порошок древесины, которые смешиваются с клеем и специальными добавками, а затем прессуются. Гак изготавливаются широко известные древесно-стружечные и древесноволокнистые плиты (ДСП и МДФ). Даже традиционная фанера изменилась путем частичной замены внутренних или внешних слоев другими материалами, а становящаяся популярной фанера высокой плотности склеивается из множества очень тонких слоев шпона.

В статье описаны назначение и свойства десятка листовых и плитных материалов. Примечание.

Мы не стали включать в нее некоторые материалы, такие как ОСИ (ориентированно-стружечную плиту) и антисептированную фанеру, предназначенные для строительствва, а не для столярной работы.

Описание листовых материалов

  • 1. Материал
  • 2. Описание
  • 3. Применение
  • 4. Стандартные размеры
  • 5. Сорта
  • 6. Преимущества
  • 7. Недостатки

Перечень:

1. Древесно-стружечная плита

2. Состоит из опилок и древесной муки со специальными добавками. Термическое прессование в листы и плиты.

3. Широко используется как подложка для напольных покрытий, для изготовления дешевой корпусной мебели. Ограниченно применяется в мастерских для изготовления некоторых приспособлений.

4. Листы и плиты толщиной 6; 12; 16; 19; 25 и 32 НИ.

5. PBU – для чернового пола M-S, М-1,М-2иМ-3-для изготовления корпусной мебели и столешниц.

6. Низкая стоимость и доступность, легкость обработки и относительная стабильность размеров.

7. Недостаточная жесткость, низкая влагостойкость. Крепеж удерживается плохо.

1. Древесно-стружечная плита с меламиновым покрытием (ЛДСП)

2. Одна или обе поверхности ДСП облицовываются бумагой, пропитанной меламиновыми смолами. На дешевых сортах пластик просто наклеивается, а на дорогих прочно связывается с основой путем нагрева.

3. Отлично подходит для изготовления корпусной мебели, так как пластиковая поверхность легко чистится. Используйте для изготовления приспособлений и простых фрезерных столов.

4. Листы и плиты размером 1250×2500 мм и толщиной 5; 12; 16 и 18 мм.

5. Стандартных градаций ЛДСП не существует, но есть так называемые «вертикальная» и «горизонтальная» разновидности. Дорогие сорта обычно имеют более толстую и прочную пленку покрытия.

6. Недорогой доступный материал с легко чистящейся поверхностью. Широкая гамма расцветок. Встречаются разновидности с покрытием из крафт-бумаги или натурального шпона.

7. Тяжелый материал с низкой влагостойкостью. Края распила часто повреждаются сколами при раскрое пильными дисками, не предназначенными для этого материала.

1. Оргалит

2. Смесь молотых древесных волокон со смолами, спрессованная в листы. Одна или обе стороны листа могут быть гладкими.

3. Отлично подходит для изготовления самодельных приспособлений и мебели для мастерской, особенно разновидности с двумя гладкими сторонами. Перфорированный оргалит-удобное средство для подвески инструментов.

4. Листы толщиной 3 и б мм.

5. Черновой (2 зеленых полосы), стандартный (1 зеленая полоса), средней твердости (2 красных полосы), твердый (1 красная полоса), S1S (с одной гладкой стороной), S2S (с обеими гладкими сторонами).

6. Доступный и недорогой материал, легко обрабатывается, относительно стабилен, хорошо окрашивается.

7. Стандартный и черновой сорта не влагостойки, плохо шлифуются и плохо удерживают крепеж. Их края легко повреждаются.

1. Древесно-волокнистая плита средней плотности (МДФ)

2. Смесь целлюлозных волокон с синтетическими смолами, спрессованная при нагреве.

3. Отлично подходит для изготовления приспособлений, корпусной мебели, окрашиваемых изделий, отделочных профилей. Используется в качестве основы для наклейки шпона и пластиков.

5. Основная разновидность: Industrial. Дешевые сорта обозначаются маркой «В» или «shop». Также классифицируется по плотности: стандартная – MD, низкой плотности – LD.

6. Гладкие поверхности, отсутствие внутренних и наружных дефектов, стабильная толщина. Хорошо склеивается. Кромки легко обрабатываются.

7. Тяжелый материал. Обычные шурупы удерживаются плохо.

1. Хвойная фанера

2. Перекрестно склеенные слои шпона из древесины хвойных пород.

3. Садовая мебель, постройки и конструкции на открытом воздухе, мебель для мастерских, основание для напольных покрытий.

4. Листы и плиты толщиной 6; 10; 12; 16; 19 и 22 мм размерами 1220×2440 и 1225×2500 мм.

5. Сорта А, В, C,D (I,II, III, IV).

6. Дешевле фанеры из лиственных пород древесины. На первосортной фанере лицевой слой шпона часто имеет красивый рисунок текстуры.

7. Красивый внешний вид часто скрывает многие дефекты. Невысокая жесткость.

1. Кашированная фанера

2. Фанера с двухсторонним покрытием из плотной бумаги, пропитанной синтетическими смолами.

4. Листы и плиты толщиной 6; 8; 10; 12; 16 и 19 мм размерами 1220×2440 мм.

5. Классифицируется по сортам так же, как фанера из лиственных пород древесины. Внешние слои (оклеенные бумагой) из шпона сорта В (II) или А (I), внутренние слои из шпона сорта С (III).

6. Гладкие поверхности хорошо окрашиваются. Легко обрабатывается. Долговечный материал, устойчивый к атмосферным воздействиям.

7. Тяжелый материал. Ограниченная доступность.

1. Декоративная фанера

2. Фанера с наружными слоями шпона из ценных пород древесины.

3. Применяется для изготовления мебели и отделки интерьеров.

4. Листы толщиной 3;6; 10; 12; 16 и 19 мм.

5. Сорта шпона на лицевой стороне: АА, А, В, C/D/E на задней стороне: 1,2,3,4.

6. Стабильнее и дешевле массивной древесины. Отсутствие внешних дефектов на лицевой стороне. Красивый внешний вид.

7. Толстые листы могут быть тяжелыми. Тонкий шпон легко повредить. Кромки деталей приходится закрывать накладками.

1. Березовая фанера

2. Склеивается из тонких слоев шпона. В дорогих сортах отсутствуют внутренние дефекты.

3. Применяется для изготовления приспособлений, мебели, выдвижных ящиков.

4. Листы размером 1525×1525 мм и толщиной 4; 6; 5; 9; 12; 15 и 18 мм.

5. Сорта: АА, А, В, С, D.

6. Жесткость, стабильность, отсутствие дефектов. Хорошо удерживает шурупы. Обработанные кромки декоративны.

7. Тяжелый материал. Наружные слои только из березового шпона.

1. Фанера «Appleply»

2. Американская разновидность высококачественной березовой фанеры с наружными слоями шпона из древесины ценных пород.

3. Применяется так же, как европейская березовая фанера, преимущественно в декоративных целях.

4. Листы и плиты толщиной 6; 10; 13; 19; 25 и 32 мм размерами 1220×2440 мм.

5. Градации по сортам нет, но для внешних слоев используется шпон сорта «В» или «А».

6. Жесткость, стабильность, отсутствие дефектов. Хорошо удерживает крепеж. Разнообразие шпона на лицевых сторонах.

7. Ограниченная доступность, высокая стоимость.

1. Гибкая фанера

2. Все внутренние слои шпона перпендикулярны наружным, что позволяет изгибать фанеру поперек волокон наружного слоя.

3. Основное применение в качестве основы при изготовлении мебели.

4. Листы толщиной 3 и 10 мм размером 1220×2440 мм. По заказу изготавливаются листы другой толщины.

5. Изгибается по малым радиусам без растрескивания, не требует распаривания или поперечных пропилов.

6. Благодаря повышенной гибкости позволяет делать закругленные углы и декоративные формы.

7. Не применяется для нагруженных конструкций.Качество шпона на лицевых сторонах не нормируется.

1. Всегда тщательно измеряйте толщину листовых материалов, прежде чем выбрать пазы или шпунты в смежных деталях. Например, толщина фанеры часто бывает на 0,3-0,8 мм меньше номинальной.

2. Распиливая листовые материалы на пильном станке, располагайте их лицевой стороной вверх, чтобы избежать сколов. При раскрое циркулярной пилой их следует располагать лицевой стороной вниз.