Что называется полупроводниками. Примеры полупроводников


По значению удельного электрического сопротивления полупроводники занимают промежуточное положение между хорошими проводниками (σ = 10 6 -10 4 Ом -1 см -1) и диэлектриками (σ= -12 — 10 -10 Ом -1 см -1). К числу полупроводников относятся многие химические элементы (германий, кремний, селен, индий, теллур, мышьяк и др.), огромное количество сплавов и химических соединений. Почти все неорганические вещества окружающего нас мира – полупроводники. Самым распространенным в природе полупроводником является кремний, составляющий около 30 % земной коры.

На электрическую проводимость полупроводников оказывает влияние кроме температуры сильное электрическое поле, давление, воздействие оптического и ионизирующего излучения, наличие примесей и другие факторы, способные изменять структуру вещества и состояние электронов. Это обстоятельство играет решающую роль в многочисленном и разнообразном использовании полупроводников .

Качественное отличие полупроводников от металлов проявляется прежде всего в зависимости удельного сопротивления от температуры. С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами.


Зависимость удельного сопротивления чистого полупроводника от температуры.

Такой ход зависимости ρ (T ) показывает, что у полупроводников концентрация носителей свободного заряда не остается постоянной, а увеличивается с ростом температуры. Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют ковалентными электронами . В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.


Парно-электронные связи в кристалле германия и образование электронно-дырочной пары

Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

Концентрация электронов проводимости в полупроводнике равна концентрации дырок: n n = n p . Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников .

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников. Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью . Различают два типа примесной проводимости – электронную и дырочную .

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As). Полупроводник n — типа. Атом мышьяка в кристаллической решётке германия.

На рисунке показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью . В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной , а полупроводник, обладающий электронной проводимостью, называется полупроводником n -типа .

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рисунке показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия.


Полупроводник р-типа. Атом Индия в кристаллической решётке германия

На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью . В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью . Примесный полупроводник с дырочной проводимостью называется полупроводником p -типа . Основными носителями свободного заряда в полупроводниках p -типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n — и p -типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

Свое название полупроводники получили оттого, что они занимают промежуточное место между проводниками (металлы, электролиты, уголь), обладающими большой электропроводимостью, и изоляторами (фарфор, слюда, резина и другие), которые почти не проводят электрического тока.

Если сравнить удельное объемное сопротивление в Ом × см для различных веществ, то окажется, что проводники имеют: ρ U = 10 -6 - 10 -3 Ом × см; удельное сопротивление полупроводников: ρ U = 10 -3 - 10 8 Ом × см; а у диэлектриков: ρ U = 10 8 - 10 20 Ом × см. К полупроводникам относятся: окислы металлов - оксиды (Al 2 O 3 , Cu 2 O, ZnO, TiO 2 , VO 2 , WO 2 , MoO 3); сернистые соединения - сульфиды (Cu 2 S, Ag 2 S, ZnS, CdS, HgS); соединения с селеном - селениды; соединения с теллуром - теллуриды; некоторые сплавы (MgSb 2 , ZnSb, Mg 2 Sb, CdSb, AlSb, ClSb); химические элементы - германий, кремний, теллур, селен, бор, углерод, сера, фосфор, мышьяк, а также большое число сложных соединений (гален, карборунд и другие).

Рисунок 1. Германий

Рисунок 2. Кремний


Рисунок 3. Теллур

Полное и широкое исследование свойств полупроводников выполнено советским ученым А. Ф. Иоффе и его сотрудниками.

Электрические свойства полупроводников резко отличаются от свойств проводников и изоляторов. Электропроводимость проводников в сильной степени зависит от температуры, освещённости, наличия и интенсивности электрического поля, количества примесей. При обычной температуре в полупроводниках есть некоторое количество свободных электронов, образовавшихся вследствие разрыва электронных связей. У полупроводников различают два вида проводимости: электронную и дырочную. Носителями заряда в полупроводниках при электронной проводимости являются свободные электроны, а при дырочной - связи, лишенные электронов.

Рассмотрим следующий опыт. Возьмем металлический проводник и будем нагревать один его конец, тогда нагретый конец проводника получит положительный заряд. Это объясняется перемещением электронов от горячего конца к холодному, в результате чего на горячем конце проводника получается недостаток электронов (положительный заряд), а на холодном конце избыток электронов (отрицательный заряд). Кратковременное протекание тока по проводнику было вызвано перемещением электронов с одного края проводника на другой. Таким образом, здесь речь идет о проводнике с электронной проводимостью. Однако существуют вещества, которые при подобном опыте ведут себя иначе: нагретый край такого вещества получает отрицательный заряд, а холодный край - положительный заряд. Это возможно, если предположить, что перенос тока осуществляется положительными зарядами.

Рисунок 4. Связь между атомами вещества

Рисунок 5. Собственная проводимость полупроводников
Рисунок 6. Электронная проводимость полупроводника
Рисунок 7. Дырочная проводимость полупроводника

Познакомимся с другим видом проводимости у полупроводников - дырочной проводимостью. В чистых полупроводниках все электроны, слабо связанные с ядрами, участвуют в электронных связях. На рисунке 4, а условно показана заполненная связь между атомами вещества. "Дыркой" называется элемент кристаллической решетки вещества, потерявший электрон, что соответствует появлению положительного заряда (рисунок 4, б ).

Освободившаяся связь может вновь оказаться заполненной, если "дырка" захватит электрон из соседней связи (рисунок 4, в ). Это вызовет переход "дырки" на новое место. В веществе полупроводника, находящегося в нормальных условиях, направление вылета электронов и место образования "дырки" носят хаотический характер. Если к чистому полупроводнику приложить постоянное напряжение, то электроны и "дырки" будут перемещаться (первые против направления сил поля, вторые в противоположном направлении). Если число образующихся "дырок" будет равно числу освободившихся электронов, то, как это бывает у чистых полупроводников, проводимость полупроводников невелика (собственная проводимость). Наличие даже небольшого количества посторонних примесей может изменить механизм электропроводимости: сделать его электронным или дырочным. Рассмотрим конкретный пример. В качестве полупроводника возьмем германий (Ge). В кристалле германия каждый атом связан с четырьмя другими атомами. При увеличении температуры или в результате облучения парные связи кристалла могут быть нарушены. При этом образуется равное количество электронов и "дырок" (рисунок 5).

Добавим к германию в качестве примеси мышьяк. Такая примесь обладает большим числом слабосвязанных электронов. Атомы примеси имеют свой энергетический уровень, располагающийся между энергетическими уровнями свободной и заполненной зон, ближе к последней (рисунок 6). Подобные примеси отдают свои электроны в свободную зону и называются донорными примесями. В полупроводнике окажется наличие свободных электронов, в то время как все связи будут заполнены. Полупроводник будет обладать электронной проводимостью в свободной зоне.

Если теперь в качестве примеси к германию добавит не мышьяк, а индий, то произойдет следующее. Такая примесь обладает малым числом слабо связанных электронов, а энергетический уровень примеси располагается между энергетическими уровнями свободной и заполненной зон, ближе к свободной зоне (рисунок 7). Примеси этого рода принимают в свою зону электроны из соседней заполненной зоны и называются акцепторными примесями. В полупроводнике окажутся незаполненные связи - "дырки" при отсутствии свободных электронов. Полупроводник будет обладать дырочной проводимостью в заполненной зоне.

Теперь станет понятным опыт нагрева полупроводника, когда нагретый конец получал отрицательный заряд, а холодный конец - положительный заряд. Под действием тепла на горячем конце начнут разрушаться связи, возникнут "дырки" и свободные электроны. Если полупроводник содержит примеси, то "дырки" начнут переходить к холодному концу, заряжая его положительно, а нагретый конец полупроводника зарядится отрицательно.

Заканчивая рассмотрение полупроводников, делаем следующий вывод.

Добавлением к полупроводнику примесей можно придать ему преобладающую электронную или дырочную проводимость. Исходя из этого, получают следующие типы полупроводников. Полупроводники с электронной проводимостью называют полупроводниками n -типа (негативные), а с дырочной проводимостью - p -типа (позитивные).

Предлагаем вам также посмотреть учебные видео-фильмы о полупроводниках:

List=PL_QCOTUIndSFAbWcR3t0wYp5IORVEHu3I

Наряду с проводниками электричества в природе существует много веществ, обладающих значительно меньшей электропроводимостью, чем металлические проводники. Вещества подобного рода называются полупроводниками.

К полупроводникам относятся: некоторые химические элементы, например селен, кремний и германий, сернистые соединения, например сернистый таллий, сернистый кадмий, сернистое серебро, карбиды, например карборунд, углерод (алмаз), бор, серое олово, фосфор, сурьму, мышьяк, теллур, йод и ряд соединений, в состав которых входит хотя бы один из элементов 4 - 7-й групп системы Менделеева. Существуют также органические полупроводники.

Природа электрической проводимости полупроводника зависит от рода примесей, имеющихся в основном материале полупроводника, и от технологии изготовления его составных частей.

Полупроводник - вещество с 10 -10 - 10 4 (ом х см) -1 , находящееся по этим свойствам между проводником и изолятором. Различие между проводниками, полупроводниками и изоляторами по зонной теории заключается в следующем: в чистых полупроводниках и электронных изоляторах между заполненной зоной (валентной) и зоной проводимости находится запрещенная зона энергий.


Почему полупроводники проводят ток

Полупроводник обладает электронной проводимостью, если в атомах его примеси внешние электроны относительно слабо связаны с ядрами этих атомов. Если в подобного рода полупроводнике создать электрическое поле, то под влиянием сил этого поля внешние электроны атомов примеси полупроводника покинут пределы своих атомов и превратятся в свободные электроны.

Свободные электроны создадут в полупроводнике электрический ток проводимости под влиянием сил электрического поля. Следовательно, природа электрического тока в полупрооводниках с электронной проводимостью та что и в металлических проводниках. Но так как свободных электронов в единице объема полупроводника во много раз меньше, чем в единице объема металлического проводника, то естественно, что при всех прочих одинаковых условиях ток в полупроводнике будет во много раз меньше, чем в металлическом проводнике.

Полупроводник обладает «дырочной» проводимостью, если атомы его примеси не только не отдают своих внешних электронов, но, наоборот, стремятся захватить электроны атомов основного вещества полупроводника. Если атом примеси отберет электрон у атома основного вещества, то в последнем образуется нечто вроде свободного места для электрона - «дырка».

Атом полупроводника, потерявший электрон, называют «электронной дыркой», или просто «дыркой». Если «дырка» заполняется электроном, перешедшим с соседнего атома, то она ликвидируется и атом становится нейтральным в электрическом отношении, а «дырка» смещается на соседний атом, потерявший электрон. Следовательно, если на полупроводник, обладающий «дырочной» проводимостью, воздействовать электрическим полем, то «электронные дырки» будут смещаться в направлении этого поля.

Смещение «электронных дырок» в направлении действия электрического поля аналогично перемещению положительных электрических зарядов в поле и, следовательно, представляет собой явление электрического тока в полупроводнике.

Полупроводники нельзя строго разграничивать по механизму их электрической проводимости, так как наряду с «дырочной» проводимостью данный полупроводник может в той или иной степени обладать и электронной проводимостью.

Полупроводники характеризуются:

    типом проводимости (электронный - n -тип, дырочный - р-тип);

    удельным сопротивлением;

    временем жизни носителей заряда (неосновных) или диффузионной длиной, скоростью поверхностной рекомбинации;

    плотностью дислокаций.

Кремний - наиболее распространенный полупроводниковый материал

Температура оказывает существ, влияние на характеристики полупроводников. Повышение ее преимущественно приводит к уменьшению удельного сопротивления и наоборот, т. е. для полупроводников характерно наличие отрицательного . Вблизи абсолютного нуля полупроводник становится изолятором.

Основой многих приборов служат полупроводники. В большинстве случаев они должны быть получены в виде монокристаллов. Для придания заданных свойств полупроводники легируют различными примесями. К чистоте исходных полупроводниковых материалов предъявляются повышенные требования.


В современной технике полупроводники нашли самое широкое применение, они оказали очень сильное влияние на технический прогресс. Благодаря им удается значительно уменьшить вес и габариты электронных устройств. Развитие всех направлений электроники приводит к созданию и совершенствованию большого количества разнообразной аппаратуры на полупроводниковых приборах. Полупроводниковые приборы служат основой микроэлементов, микромодулей, твердых схем и т. д.

Электронные устройства на полупроводниковых приборах практически безинерционны. Тщательно выполненный и хорошо герметизированный полупроводниковый прибор может служить десятки тыс. часов. Однако некоторые полупроводниковые материалы имеют малый температурный предел (например, германий), но не очень сложная температурная компенсация или замена основного материала прибора другим (напр., кремнием, карбидом кремния) в значительной, степени устраняет и этот недостаток. Совершенствование технологии изготовления полупроводниковых приборов приводит к уменьшению имеющихся еще разброса и нестабильности параметров.

Контакт полупроводник - металл и электронно-дырочный переход (n -р-переход), созданный в полупроводниках, используются при изготовлении полупроводниковых диодов. Двойные переходы (р-n -р или n -р-n ) - транзисторов и тиристоров. Эти приборы в основном применяются для выпрямления, генерации и усиления электрических сигналов.

На основе фотоэлектрических свойств полупроводников создают фотосопротивления, фотодиоды и фототранзисторы. Полупроводник служит активной частью генераторов (усилителей) колебаний . При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов, что используется при создании светодиодов.



Термоэлектрические свойства полупроводников позволили создать термосопротивления полупроводниковые, термоэлементы полупроводниковые, термобатареи и термоэлектрические генераторы, а термоэлектрическое охлаждение полупроводников, на основе эффекта Пельтье, - термоэлектрические холодильники и термостабилизаторы.

Полупроводники используются в безмашинных преобразователях тепловой и солнечной энергии в электрическую - термоэлектрических генераторах, и фотоэлектрических преобразователях (солнечных батареях).

Механическое напряжение, приложенное к полупроводнику, изменяет его электрическое сопротивление (эффект сильнее, чем в металлах), что явилось основой тензометра полупроводникового.

Полупроводниковые приборы получили широкое распространение в мировой практике, революционно преобразуя электронику, они служат основой при разработке и производстве:

    измерительной техники, компьютеров,

    аппаратуры для всех видов связи и транспорта,

    для автоматизации процессов в промышленности,

    устройств для научных исследований,

    ракетной техники,

    медицинской аппаратуры

    других электронных устройств и приборов.

Применение полупроводниковых приборов позволяет создавать новую аппаратуру и совершенствовать старую, приводит к значит, уменьшению ее габаритов, веса, потребляемых мощностей, а значит, уменьшению выделения тепла в схеме, к увеличению прочности, к немедленной готовности к действию, позволяет увеличить срок службы и надежность электронных устройств.

Мы рассказывали о проводниках и диэлектриках и вскользь упомянули о том, что есть промежуточная форма проводимости, которая при определенных условиях может принимать свойства проводника или диэлектрика. Этот тип веществ называют полупроводниками.

Напомню: по электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока.
Наиболее часто для производства полупроводников используют германий, кремний, реже — селен, закись меди и другие вещества.

Электропроводность полупроводников сильно зависит от окружающей температуры. При температуре, близкой к абсолютному нулю (- 273С), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводящими, т. е. почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света. Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается.

Полупроводники могут преобразовывать энергию света в электрический ток. Проводникам же это совершенно не свойственно. Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается.

Германий и кремний, являющиеся исходными материалами многих современных полупроводниковых приборов, имеют во внешних слоях своих оболочек по четыре валентных электрона. Всего же в атоме германия 32 электрона, а в атоме кремния 14. Но 28 электронов германия и 10 электронов кремния, находящиеся во внутренних слоях их оболочек, прочно удерживаются ядрами и ни при каких обстоятельствах не отрываются от них. Только четыре валентных электрона атомов этих полупроводников могут, да и то не всегда, стать свободными. Атом же полупроводника, потерявший хотя бы один электрон, становится положительным ионом. В полупроводнике атомы расположены в строгом порядке: каждый из них окружен четырьмя такими же атомами. Они к тому же расположены настолько близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг всех соседних атомов, связывая их в единое вещество.
Такую взаимосвязь атомов в кристалле полупроводника можно представить себе в виде плоской схемы, как показано на рис. 1, а. Здесь большие шарики со знаком « + » условно изображают ядра атомов с внутренними слоями электронной оболочки (положительные ионы), а маленькие шарики — валентные электроны . Каждый атом, окружен четырьмя точно такими же. Любой из них связан с каждым соседним двумя валентными электронами, один из которых «свой», а второй заимствован у «соседа». Это двухэлектронная, или валентная, связь. Самая прочная связь! В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и по одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов «свой», а какой «чужой», поскольку они стали общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис. 1, 6. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи — двумя линиями, символизирующими валентные электроны.

Электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б — разорвавшаяся линия). Чем выше температура, тем больше появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному электрона.

Рис 1. Схема взаимосвязи атомов в кристале полупроводника (а) и упрощенная схема его структуры (б).

А теперь рассмотри рис. 2. На нем схематично изображено явление возникновения тока в полупроводнике. Причиной возникновения тока служит напряжение, приложенное к полюсам (на рис. 2 источник напряжения символизируют знаки « + » и « — ») . Вследствие тепловых явлений во всей массе полупроводника высвобождается из межатомных связей некоторое количество электронов (на рис. 2 они обозначены точками со стрелками). Электроны, освобождавшиеся вблизи положительного полюса источника напряжения, притягиваются этим полюсом и уходят из массы полупроводника, оставляя после себя дырки. Электроны, ушедшие из межатомных связей на некотором удалении от положительного полюса, тоже притягиваются им и движутся в его сторону. Но, встретив на своем пути дырки, электроны как бы «впрыгивают» в них (рис. 2, а), происходит заполнение межатомных связей. А ближние к отрицательному полюсу дырки заполняются другими электронами, вырвавшимися из атомов, расположенных еще ближе к отрицательному полюсу (рис. 2, б). Пока в полупроводнике действует электрическое поле, этот процесс продолжается: нарушаются одни межатомные связи — из них уходят валентные электроны, возникают дырки — и заполняются другие межатомные связи — в дырки «впрыгивают» электроны, освободившиеся из каких — то других межатомных связей (рис. 2, б-в).

Рис 2. Схема движения электронов и дырок.

При температуре выше абсолютного нуля в полупроводнике непрерывно возникают и исчезают свободные электроны и дырки даже тогда, когда нет внешних электрических полей. Но электроны и дырки движутся хаотически в разные стороны и не уходят за пределы полупроводника. В чистом полупроводнике число высвободившихся в каждый момент времени электронов равно числу образующихся при этом дырок . Общее же их число при комнатной температуре относительно невелико. Поэтому электропроводность такого полупроводника, (называемая собственной) , мала, он оказывает электрическому току довольно большое сопротивление. Но если в чистый полупроводник добавить даже ничтожное количество примеси в виде атомов других элементов, электропроводность его резко повысится. При этом в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость

Если какой-либо атом в кристалле полупроводника заменить атомом сурьмы, имеющим во внешнем слое электронной оболочки пять валентных электронов, этот атом — «пришелец» четырьмя электронами свяжется с четырьмя соседними атомами полупроводника. Пятый же валентный электрон атома сурьмы окажется «лишним» и станет свободным. Чем больше в полупроводник будет введено атомов сурьмы, тем больше в его массе окажется свободных электронов. Следовательно, полупроводник с примесью сурьмы приближается по своим свойствам к металлу: для того чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи. Их называют полупроводниками с электропроводностью или типа (n). Здесь латинская буква n — начальная буква латинского слова negativ (негатив), что значит «отрицательный» . Этот термин в данном случае нужно понимать в том смысле, что в полупроводнике типа n основными носителями тока являются отрицательные заряды, т.е. электроны.

Дырочная проводимость

Совсем иная картина получится, если в полупроводник ввести атомы с тремя валентными электронами, например индия. Каждый атом металла индия своими тремя электронами заполнит связи только с тремя соседними атомами полупроводника, а для заполнения связи с четвертым у него не хватает одного электрона. Образуется дырка. Она, конечно, может заполниться каким — либо электроном, вырвавшимся из валентной связи с другими атомами полупроводника. Однако независимо от того, где будут дырки, в массе полупроводника с примесью индия не будет хватать электронов для их заполнения. И чем больше будет введено в полупроводник примесных атомов индия, тем больше в нем образуется дырок. Чтобы в таком полупроводнике электроны могли перемещаться, совершенно обязательно должны разрушаться валентные связи между атомами. Вырвавшиеся из них электроны или же электроны, поступившие в полупроводник извне, движутся от дырки к дырке. А во всей массе полупроводника в любой момент времени число дырок будет больше общего числа свободных электронов. Их называют полупроводниками с дырочной электропроводностью или тип (р). Латинская буква р — первая буква латинского слова positiv (позитив), что значит «положительный». Этот термин в данном случае нужно понимать в том смысле, что явление электрического тока в массе полупроводника типа (р) сопровождается непрерывным возникновением и исчезновением положительных зарядов — дырок. Перемещаясь в массе полупроводника, дырки как бы являются носителями тока. Полупроводники типа р, так же как и типа n, обладают во много раз лучшей электропроводностью по сравнению с чистыми.
Надо сказать, что практически не существует как совершенно чистых полупроводников, так и абсолютно электропроводимых типов n и р. В полупроводнике с примесью индия обязательно есть небольшое количество атомов некоторых других элементов, придающих ему электронную проводимость, а с примесью сурьмы есть атомы элементов, создающих в нем дырочную электропроводность. Например, в полупроводнике, имеющем в целом электропроводность типа n, есть дырки, которые могут заполняться свободными электронами примесных атомов сурьмы. Вследствие этого электропроводность несколько ухудшится, но в целом он сохранит электронную проводимость. Аналогичное явление будет наблюдаться и в том случае, если в полупроводник с дырочным характером попадут свободные электроны.

Поэтому в полупроводниках типа n — основными носителями тока являются электроны (преобладает электронная электропроводность), а к полупроводниках типа р — основными носителями тока являются дырки (преобладает дырочная электропроводность).

Полупроводники - это вещества, в которых электрический ток образуется движением электронов, а величина удельного сопротивления находится в пределах между проводниками и диэлектриками. Полупроводниками являются химические элементы IV, У и VI групп периодической системы Д. И. Менделеева - графит, кремний, германий, селен и другие, а также многие окислы и другие соединения различных металлов. Количество подвижных носителей зарядов в полупроводниках в обычных условиях невелико, однако оно возрастает в сотни и тысячи раз при некоторых внешних воздействиях (нагревание, действие света и т. д.), а также при наличии в полупроводнике определенных примесей.

Полупроводники делятся на электронные (типа n ) и дырочные (типа p ). В полупроводниках типа n в качестве носителей зарядов рассматриваются электроны, которые при образовании тока перемещаются по всему полупроводнику подобно свободным электронам в металлах. В полупроводниках типа p в качестве носителей зарядов рассматриваются так называемые дырки (под дырками понимается свободное место у атома, которое может быть занято посторонним ему электроном). Дырки считаются эквивалентом положительного заряда, равного электрону. При образовании тока в полупроводнике типа p электроны совершают только направленные перескоки между соседними атомами; при перескоке электрона из одной дырки в другую дырка перемещается в противоположном направлении, что и рассматривается как образование тока.

Основные области применения полупроводников. Полупроводники, сопротивление которых при нагревании вследствие освобождения носителей зарядов значительно снижается, применяются в качестве электротермометров, или термисторов; по сравнению с ртутными термометрами они отличаются значительно более высокой чувствительностью и отсутствием тепловой инерции. Термистор (рис. 1, а) обычно имеет форму шарика 1, в который заделаны выводы 2 из тонкой проволоки. Термистор окружен тонкой пластмассовой изоляцией 3 и укреплен на конце измерительной ручки 1 (рис. 1,6). Провода от термистора включаются в одно плечо измерительной схемы (мостик Уитстона), в другое плечо которой включен микроамперметр 2 (рис. 1, б). Шкала прибора градуируется в градусах Цельсия. В одном корпусе с прибором помещаются сухие элементы и другие детали измерительной схемы. Благодаря малой величине термистор может применяться для измерения кожной, полостной и даже внутритканевой температуры; в последнем случае он заделывается внутрь иглы, которая вкалывается в ткань.


Рис. 1. Схема устройства термистора.

Если нагревать один конец стержня из полупроводника, то освобождающиеся в нем носители зарядов с высокой кинетической энергией (электроны или дырки) будут диффундировать к другому концу стержня, образуя на нем избыток заряда соответствующего знака. Между горячим и холодным концами полупроводника образуется разность потенциалов, прямо пропорциональная разности температур этих концов. Обычно составляют пару из электронного и дырочного полупроводника. При нагревании их спая между холодными концами образуется термоэлектродвижущая сила, равная сумме разностей потенциалов, образующейся в каждом из полупроводников. Она в сотни раз превышает термоэлектродвижущую силу металлических термопар.

Термоэлектрические явления обратимы: если через спай электронного и дырочного полупроводника пропускать в определенном направлении ток от постороннего источника, то спай будет охлаждаться по отношению к температуре свободных концов полупроводника. Это явление используется при устройстве холодильных элементов. На рис. 2 показан полупроводниковый лабораторный холодильник. Холодильные элементы расположены в форме кольца, спаями внутрь. В это кольцо вставляется сосуд с охлаждаемой жидкостью. Противоположные концы элементов снабжены радиаторами, при помощи которых у них поддерживается температура окружающей среды. Постоянный ток от аккумулятора подводится к клеммам.


Рис. 2. Полупроводниковый лабораторный холодильник.

При тесном соприкосновении полупроводника с электронной и дырочной проводимостью (такой контакт называется электронно-дырочным переходом) происходит диффузия электронов из электронного полупроводника в дырочный и дырок из дырочного полупроводника в электронный. При этом в прилежащих к контакту слоях полупроводника количество основных носителей зарядов уменьшается, и электропроводность их снижается. Если к электронно-дырочному переходу приложена внешняя разность потенциалов, вызывающая движение основных носителей зарядов в полупроводнике навстречу друг другу, то пограничные слои обогащаются ими, электропроводность их повышается и ток в этом направлении образуется беспрепятственно. Если внешняя разность потенциалов вызывает движение основных носителей зарядов в полупроводнике в противоположные стороны от контакта, то электропроводность пограничных слоев снижается до минимума. Ток в этом направлении не образуется. В связи с этим электронно-дырочный переход называется «запирающим слоем» и применяется для выпрямления переменного тока. Купроксные или селеновые выпрямительные элементы состоят из опорной шайбы со слоем полупроводника, в котором образован запирающий слой. Необходимое (в зависимости от величины выпрямляемого напряжения) число элементов собирается на стержне в форме столбика (рис.3). Площадь элементов сообразуется с силой выпрямляемого тока.


Рис. 3. Купроксный выпрямительный элемент.


Рис. 4. Схема устройства фотоэлемента.

Фотоэлементы - это полупроводниковые приборы, в которых под действием света образуется самостоятельная разность потенциалов. Селеновый фотоэлемент (рис. 4) состоит из слоя полупроводника, расположенного между двумя электродами: опорным 1 и вторым 3 в виде тонкого прозрачного для света слоя металла. Внутри полупроводника образован запирающий слой 2.

При действии света в полупроводниках происходит освобождение электронов и дырок, которые стремятся распределиться по всему полупроводнику. Однако через запирающий слой могут проходить заряды только одного какого-нибудь знака. В результате этого в полупроводнике происходит разделение зарядов и между прилегающими к нему электродами образуется разность потенциалов. Кривая спектральной чувствительности селенового фотоэлемента близка к аналогичной кривой для глаза. В связи с этим он широко применяется в приборах для объективной фотометрии (люксметрах) и колориметрии (фотоколориметрах).

Электронно-дырочный переход используется также при устройстве кристаллических диодов и триодов - приборов, аналогичных по свойствам электронным лампам и во многих случаях применяющихся вместо них.