Альдегидная группа формула. Названия карбоновых кислот


Вопрос 1. Альдегиды. Их строение, свойства, получение и применение.

Ответ. Альдегиды – органические вещества, молекулы которых

Общая формула альдегидов ˸

Номенклатура

Наименование альдегидов производят от исторических названий карбоновых кислот с тем же числом атомов углерода. Так, CH 3 CHO – уксусный альдегид. По систематической номенклатуре название альдегидов производят от названий углеводородов с прибавлением окончания –аль , CH 3 CHO – этаналь. Нумерацию углеродной цепи начинают с карбонильной группы. Для разветвленных изомеров перед названием альдегида записывают названия заместителей с указанием цифрой и номера углеродного атома, с которым они связаны˸

CH 3 – CH (CH 3) – CH 2 – CHO.

3-метилбутаналь

Изомерия

Углеродного скелета ˸

CH 3 – CH 2 – CH 2 – CHO – бутаналь,

CH 3 – CH(CH 3) – CHO – 2-метилпропаналь.

Классов соединений ˸

CH 3 – CH 2 – CHO – пропаналь,

CH 3 – CO – CH 3 – пропанон (ацетон).

Физические свойства

Метаналь – газ, альдегид от C 2 до С 13 – жидкости, высшее альдегиды – твердые вещества (тетрадеканаль или миристиновый альдегид CH 3 (CH 2) 12 CHO имеет температуру плавления 23,5 ). Низшие альдегиды хорошо растворимы в воде; чем больше атомов углерода в молекуле, тем меньше растворимость; у альдегидов нет водородной связей.

Химические свойства

1. Реакции присоединения ˸

а) гидрирование ˸

CH 2 O + H 2 = CH 3 OH;

б) образование ацеталий со спиртами ˸

CH 3 - CH 2 – CHO + 2C 2 H 5 OH = CH 3 – CH 2 – CH(OC 2 H 5) 2 + H 2 O.

2. Реакция окисления˸

а) реакция ʼʼсеребряного зеркалаʼʼ ˸

CH 3 CHO + Ag 2 O 2 Ag + CH 3 COOH;

б) взаимодействие с гидрооксидом меди (II) ˸

CH 3 CHO + 2Cu(OH) 2 CH 3 COOH + Cu 2 O↓ + 2H 2 O

3. Реакции замещения˸

CH 3 CH 2 CHO + Br 2 = CH 3 – CH (Br) – CHO+ HBr

4.Полимеризация˸

CH3=O (CH 2 O) 3 .

триоксиметилен

5.Поликонденсация˸

n C 6 H 5 OH + n CH 2 O + n C 6 H 5 OH + …=

=[ C 6 H 4 (OH) – CH 2 – C 6 H 4 (OH)] n + n H 2 O

Фенолформальдегидная смола

Получение

а) Окисление алканов˸

CH 4 + O 2 CH 2 O + H 2 O.

метаналь

б) Окисление спиртов˸

2CH 3 OH + O 2 2CH 2 O + 2H 2 O.

в) Реакция Кучерова˸

C 2 H 2 + H 2 O CH 3 CHO.

г) Окисление алкенов˸

C 2 H 4 + [O] CH 3 CHO.

Применение˸

1. Получение фенолформальдегидных смол, пластмасс.

2. Производство лекарств, формалина (из CH 2 =O).

3. Производство красителей.

4. Производство уксусной кислоты.

5. Дезинфекция и протравливание семян.

Вопрос 2. Проблема защита окружающей среды .

Ответ ˸ На сегодняшний день самым крупномасштабным является загрязнение окружающей среды химическими веществами.

Охрана атмосферы

Источники загрязнения˸ предприятия чёрной и цветной металлургии, теплоэлектростанции, автотранспорт.

Промышленность˸ выбросы оксидов серы и азота. В результате обжига сульфидных руд цветных металлов выделяется оксид серы (IV).

Теплоэлектростанции выделяют SO 2 и SO 3 ,которые соединяются с влагой воздуха (SO 3 + H 2 O = H 2 SO 4)и выпадают с виде кислотных дождей.

Вопрос 1. Альдегиды. Их строение, свойства, получение и применение. - понятие и виды. Классификация и особенности категории "Вопрос 1. Альдегиды. Их строение, свойства, получение и применение." 2015, 2017-2018.























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: характеризовать состав, строение, классификацию, физические и химические свойства, получение и применение альдегидов. Устанавливать взаимосвязь между изученными классами органических соединений. Знать качественные реакции на альдегиды.

Всюду в нашей жизни мы встречаемся с органической химией: мы едим продукты химической промышленности, мы одеваемся непосредственно в ее результаты: ацетатный шелк, искусственную шерсть, изделия из кожзаменителя и многое другое, благодаря химии мы можем проводить сложные операции (наркоз), лечить ангину и просто ставить уколы, где в качестве антисептика мы выбираем этиловый спирт.

Сегодня мы познакомимся с вами с классом органических веществ – альдегидами. Сегодня на уроке мы докажем, что жизнь без альдегидов невозможна. Узнаем, как связаны с этой темой хорошо известные вещества: ванилин, моющие средства, формалин, пластмасса, зеркало, уксусная кислота

Итак, альдегиды – это органические соединения, содержащие в составе своей молекулы, полярную карбонильную группу. В зависимости от заместителей, связанных с оксогруппой, эти вещества подразделяют на альдегиды и кетоны. В альдегидах с карбонильной группой связаны углеводородный радикал и атом водорода, тогда как в кетонах карбонильный углерод связан с двумя углеводородными радикалами.

Общая формула предельных карбонильных соединений C n H 2n O

Названия альдегидов по тривиальной номенклатуре часто производят от названий соответствующих монокарбоновых кислот. По рациональной номенклатуре альдегиды с разветвленной углеводородной цепью рассматриваются как производные ацетальдегида. По систематической номенклатуре названия рассматриваемых соединений производятся от соответствующих алканов с добавлением суффикса – аль.

Способы получения альдегидов. Основными способами получения альдегидов является каталитическое дегидрирование спиртов, гидратация алкинов, окисление спиртов.

Физические свойства.

Первый член гомологического ряда предельных альдегидов НСОН – бесцветный газ, несколько последующих альдегидов – жидкости. Высшие альдегиды – твердые вещества. Карбонильная группа обуславливает высокую реакционную способность альдегидов. Температура кипения альдегидов возрастает с увеличением молекулярной массы. Кипят они при более низкой температуре, чем соответствующие спирты, например пропионовый альдегид при 48,8 0 С, а пропиловый спирт – при 97,8 0 С.

Плотность альдегидов меньше единицы. Муравьиный и уксусный альдегиды хорошо растворяются в воде, последующие – хуже. Низшие альдегиды имеют резкий, неприятный запах, некоторые высшие – приятный запах.

Реакционная способность альдегидов обусловлена наличием активной карбонильной группы. Высокая электроотрицательность атома кислорода способствует сильной поляризации двойной связи в карбонильной группе и смещению подвижных?-электронов в сторону атома кислорода.

Химические свойства альдегидов:

1. Реакции присоединения:

А) реакция гидрирования

Б) реакция присоединения NaHSO 3

2. Реакции окисления:

А) реакция серебряного зеркала

Б) реакция светофор

3. Реакция поликонденсации

4. Реакция полимеризации

Качественная реакция на карбоксильную группу - реакция окисления альдегидов гидроксидом меди (ІІ) - светофор.

НСОН + 2Cu(OH) 2 = HCOOH +Cu 2 O +2H 2 O

“Реакция серебряного зеркала”

Вы можете представить себе жизнь без зеркала? Проснуться утром – и не увидеть своего отражения? Кажется, ерунда, мелочь. А ведь какой душевный дискомфорт! Недаром сказочных персонажей в качестве наказания лишали отражения. Что такое зеркало? В чем его сила? Откуда оно появилось? Как его изготавливают?

Как мы уже знаем, первыми настоящими зеркалами служили отполированные до блеска металлические пластинки из меди, золота, серебра. Однако такие зеркала имели большой недостаток – на воздухе быстро темнели и тускнели. Какой же выход нашли из этой ситуации? Многочисленные опыты показали, что блестящий металлический слой можно нанести и на стекло. Так, в I в. н.э. начали изготавливать стеклянные зеркала – стеклянные пластинки, соединенные со свинцовыми или оловянными пластинами. Делалось это так: мыли спиртом стекло, очищали его тальком и затем к поверхности плотно прижимали оловянный лист. Сверху наливали ртуть и, дав ей постоять, сливали избыток. Образовавшийся слой амальгамы заклеивали или закрашивали. Такие зеркала оказались намного долговечнее металлических, поэтому ремесленные мастерские перешли на выпуск стеклянных зеркал, отражающая поверхность которых была сделана из амальгамы олова (раствор олова Sn в ртути Hg). Но, поскольку пары ртути очень ядовиты, производство ртутных зеркал было весьма вредным, да и сами зеркала содержали ртуть. Было опасно держать ртутные зеркала в жилых помещениях.

Поэтому ученые продолжали искать замену для ртути. Ее нашли французский химик Франсуа Птижан и великий немецкий ученый Юстус Либих. Либих предложил изготавливать стеклянные зеркала с серебряным покрытием. Разработанный им метод состоял из следующих операций. Сначала к водному раствору нитрата серебра AgNO 3 добавляли водный раствор гидроксида калия KОН, что приводило к осаждению черно-коричневого осадка оксида серебра Ag 2 O.

2AgNO 3 + 2KOH = Ag 2 O + 2KNO 3 + H 2 O.

Осадок отфильтровывали и перемешивали с водным раствором аммиака NH 3 .

Ag 2 O + 4NH 3 + H 2 O = 2 (OH).)

Оксид серебра растворялся в аммиачной воде с образованием комплексного соединения (аммиаката, или аммина) – гидроксида диамминсеребра(I). Затем в полученный прозрачный раствор погружали лист стекла, одна из поверхностей которого была тщательно обезжирена, и добавляли формальдегид НСНО.

2(OH) + HCHO = 2Ag + HCOONH 4 + 3NH 3 + H 2 O.)

Формальдегид восстанавливал серебро, которое осаждалось на очищенной поверхности стекла, покрывая его блестящим зеркальным налетом.

Применение альдегидов и кетонов.

Формальдегид. Первым членом гомологического ряда предельных альдегидов является формальдегид НСОН. Его называю также метаналь и муравьиный альдегид. Он представляет собой бесцветный газ с характерным резким запахом. Широко применяется водный раствор, содержащий в массовых долях 0,4, или 40%, метаналя. Он называется формалином. Формальдегид (формалин), прозрачная бесцветная жидкость со своеобразным острым запахом. Применяют как дезинфицирующее и дезодорирующее средство для мытья рук, обмывания кожи при повышенной потливости (0,5–1%), для дезинфекции инструментов (0,5%), для спринцеваний (1:2000 – 1:3000). Входит в состав лизоформа.

Его использование основано также на свойстве свертывать белок. Так, например, в кожевенном производстве дубящее действие формалина объясняется свертыванием белка, в результате чего кожа твердеет и не подвергается гниению. На этом же свойстве основано применение формалина для сохранения биологических препаратов. Иногда формалин используется для дезинфекции и протравливания семян. Метаналь идет на производство некоторых лекарственных веществ и красителей. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс.

Пластмассы, изготовленные из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирте получают различные лаки.

При взаимодействии метаналя с карбамидом СО(NН) 2 получают карбамидную смолу, а из нее – аминопласты. Из этих пластмасс изготовляют микропористые материалы для нужд электротехники (выключатели, розетки), материалы для отделки мебели и интерьеров, древесностружечные плиты, искусственный мрамор. Тепло – и звукоизоляционные пористые материалы.

Ацетальдегид СН 3 – СОН представляет собой бесцветную жидкость с резким удушающим запахом. Применяют в производстве ацетатов целлюлозы, уксусной и пероксиуксусной кислот, уксусного ангидрида, этилацетата, глиоксаля, алкиламинов, бутанола, хлораля. Подобно формальдегиду он вступает в реакции поликонденсации с аминами, фенолом и другими веществами, образуя синтетические смолы, широко применяемые в промышленности.

Бензальдегид С 6 Н 5 С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Алифатический альдегид СН 3 (СН 2) 7 С (Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия.

Цитраль С 10 Н 15 О (3,7-диметил – 2,6-октадиеналь) с запахом лимона используется в средствах бытовой химии.

Кротоновый альдегид. Сильный лакриматор, используют для получения бутанола, сорбиновой и масляной кислот. Содержится в соевом масле. Применение альдегидов в медицине.

Коричный альдегид содержится в масле корицы, его получают перегонкой коры дерева корицы. Применяется в кулинарии в виде палочек или порошка

Уротропин (CH 2) 6 N 4 (гексаметилентетрамин), бесцветные кристаллы без запаха, легко растворимы в воде. Водные растворы имеют щелочную реакцию. Обладает антисептическим действием. Применяют главным образом при инфекционных процессах мочевыводящих путей (циститах, пиелитах). Действие основано на способности препарата разлагаться в кислой среде с образованием формальдегида. Назначают препарат натощак. Показаниями для его применения служат холециститы, холангиты, аллергические заболевания кожи, глаз (кератиты, иридоциклиты и др.). Препарат может вызвать раздражение паренхимы почек, при этих признаках прием препарата прекращают.

Акролеин. Используется для производства пластмасс, отличающихся большой твердостью. Акролеин и его натриевые соли являются эмульгаторами, структурирующими почвы, лактонные его производные улучшают свойства бумаги и текстильных изделий.

Обобщение и систематизация знаний. Подведение итогов урока.

Таким образом, способность альдегидов и кетонов участвовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Домашнее задание.

Альдегиды и кетоны характеризуются присутствием в молекуле карбонильной группы . В альдегидах карбонильная группа связана с одним атомом водорода и одним углеводородным радикалом. Все альдегйды содержат группу

называемую альдегидной группой.

Общая формула альдегидов:

Молекула альдегида содержит на два атома водорода меньше, чем молекула соответствующего спирта

т. е. альдегид - это дегидрированный (окисленный) спирт. Отсюда и произошло название «альдегид» - от соединения двух сокращенных латинских слов alcohol dehydrogenatus (дегидрированный спирт).

Предельные альдегиды и кетоны имеют одинаковую суммарную формулу

Номенклатура и изомерия. Названия альдегидов происходят от названий предельных кислот, в которые они превращаются при окислении. Это объясняется тем, что многие кислоты были открыты и получили название раньше, чем соответствующие им альдегиды.

Названия и формулы некоторых простейших альдегидов приведены ниже:

Для составления названий альдегидов по женевской номенклатуре прибавляют к названию углеводорода с таким же числом углеродных атомов окончание аль. В сложных случаях положение альдегидной группы обозначают цифрой, которая ставится после этого окончания:

Изомерия альдегидов обусловлена изомерией цепи углеродных атомов углеводородного радикала:

Названия кетонов по рациональной номенклатуре производят от названий радикалов, входящих в их молекулу, с добавлением окончания кетон, например:

Некоторые кетоны носят исторически сложившиеся названия, например диметилкетон называется ацетоном.

По женевской номенклатуре названия кетонов производят прибавляя к названию соответствующего углеводорода окончание он. В случае разветвленной цепи кетона нумерацию углеродных атомов начинают с того конца, к которому ближе находится разветвление (по правилам нумерации углеводородов). Место

занимаемое карбонильной группой, обозначается в названии дифрой, стоящей после окончания, например:

Физические свойства. Первый член гомологического ряда альдегидов - муравьиный альдегид - газ; средние представители жидкости; высшие альдегиды - твердые вещества. Низшие альдегиды обладают резким запахом, хорошр смешиваются с водой. Средние альдегиды растворимы в воде умеренно; высшие альдегиды - нерастворимы. Все альдегиды хорошо растворяются в спирте и эфире.

Низшие кетоны - жидкости с характерным запахом, легко смешивающиеся с водой. Высшие кетоны - твердые вещества. Все кетоны хорошо растворимы в спирте и эфире.

Химические реакции альдегидов и кетонов. Альдегиды и кетоны чрезвычайно реакционноспособные органические вещества. Многие их реакции протекают без нагревания и давления. Особенно характерны для альдегидов и кетонов реакции, которые протекают с участием карбонильной группы. Существуют, однако, некоторые различия в реакциях альдегидов и кетонов. Как правило, альдегиды более реакционноспособны по сравнению с кетонами.

Реакции присоединения: К карбонильной группе альдегидов и кетонов может присоединяться ряд различных веществ. При этом одна из связей, соединяющих атомы кислорода и углерода в карбонильной группе, разрывается, и к образовавшимся свободным валентностям присоединяются части реагирующего вещества. Если присоединяющееся вещество содержит водород, то последний всегда направляется к карбонильному кислороду; карбонильная группа при этом превращается в гидроксильную:

С электронной точки зрения эта" реакционная особенность карбонильного кислорода в альдегидах и кетонах объясняется тем, что электронные облака, образующие связь между атомами углерода и кислорода в карбонильной группе, сдвинуты к атому кислорода, так как последний сильнее притягивает электроны, чем атом углерода. В результате двойная связь оказывается сильно поляризованной:

К поляризованной двойной связи различные вещества присоединяются в определенйом направлении. Рассмотрим некоторые реакции присоединения, характерные для альдегидов и кетонов.

Присоединение синильной кислоты Связь в молекуле синильной кислоты также поляризована, и поэтому водород, имеющий некоторый положительный заряд, присоединяется к атому кислорода, а группа к атому углерода:

Получающиеся в этом случае срединения носят название циангиоринов (или оксинитрилов) и представляют" собой соединения со смешанными функциями (содержащие одновременно гидроксил и цианогруппу). Оксйнитрилы служат исходными веществами для синтеза различных органических соединений.

Присоединение бисульфита натрия (кислого сёрнистокислого натрия

Полученные соединения (бисульфитные соединения) - кристаллические вещества. Они используются в лабораторной практике для выделения альдегидов и кетонов в чистом состоянии из их смесей с другими веществами, так как легко разлагаются при

кипячении с содой или разбавленными кислотами с образованием исходных альдегидов и кетонов.

Присоединение металлоорганических, соединений к карбонильной группе альдегидов и кетонов рассмотрено на стр. 165.

Восстановление альдегидов и кетонов можно рассматривать как реакцию присоединения молекулы водорода к карбонильной группе. При восстановлении альдегидов образуются первичные спирты, а при восстановлении кетонов - вторичные:

Реакции замещения в ряду альдегидов и кетонов приводят к замене кислорода карбонильной группы на другие атомы или радикалы.

Действие пятигалоидного фосфора. При действии, например, пятихлористого фосфора происходит замещение карбонильного кислорода на два атома хлораи образуется дигалоидное про лзводное углеводорода:

Эти дигалоидные соединения, реагируя с водой, способны снова давать исходные альдегиды и кетоны.

Действие гидроксиламина. При действии гидроксиламина на альдегиды и кетоны образуются соответственно - альдоксимы и кетоксимы (гидроксиламин можно рассматривать как аммиак, у которого один атом водорода замещен на гидроксил):

Получающиеся в результате этой реакции оксимы в большинстве случаев представляют собой кристаллические вещества и служат для открытия и выделения альдегидов и кетонов в чистом виде.

Реакции окисления. Альдегиды легко окисляются различными окислителями, переходя в карбоновые кислоты:

Например, альдегиды легко отнимают кислород от окислов некоторых металлов. На этом свойстве основана так называемая реакция серебряного зеркала. Она заключается в том, что пр» нагревании альдегида с аммиачным раствором окиси серебра происходит окисление альдегида в кислоту и восстановление окиси серебра до металлического серебра:

Металлическое серебро оседает на стенках сосуда и образует блестящую зеркальную поверхность.

Кетоны окисляются значительно труднее. Лишь при очень энергичном окислении происходит разрыв их углеродной цепи образуются две кислоты, например:

Реакции с участием атома водорода в -положении относительно карбонильной группы.

Действие галоидов. Карбонильная группа вальдегидах и кетонах сильно влияет на подвижность водородных атомов, находящихся у углерода, стоящего рядом с карбонильной группой -положении). Так, например, при действии на альдегиды или кетоны брома или хлора они легко замещают атомы водорода в -положении:

Атомы галоида, вступившие в -положение к карбонильной группе альдегидов или кетонов, также обладают весьма большой реакционной способностью.

Реакции конденсации. Реакциями конденсации называются такие реакции уплотнения, при которых происходит образование новых углерод-углеродных связей. Реакции конденсации могут протекать без выделения простых молекул (воды, аммиака, хлористого водорода и т. п.) или же с выделением их.

Альдегиды легко вступают в реакции конденсации. Так, например, молекула уксусного альдегида под действием небольших количестб разбавленной щелочи на холоду конденсируется с другой молекулой того же альдегида:

Полученное соединение, содержащее альдегидную и спирто вую группы, получило название альдоля (сокращенное от альдегидоалкоголь), а приведенная выше реакция - альдольной конденсации. Как видно из уравнения реакции, альдольная конденсация идет за счет подвижного атома водорода в -положении к карбонильной группе.

В несколько других условиях конденсация может протекать с образованием новой двойной углерод-углеродной связи:

Полученное соединение называется кротоновым альдегидом, а реакция - кротоновой конденсацией.

Кетоньг также способны к реакциям конденсации, которые протекают несколько сложнее, чем для альдегидов.

Характерные реакции альдегидов. Для альдегидов, как соединений более реакционноспособных, чем кетоны, характерны еще следующие реакции:

Образование сложных эфиров. Если к альдегиду прибавить небольшое количество алкоголята алюминия, то протекает энергичная реакция, при которой как бы происходит окисление одной молекулы альдегида за счет восстановления другой молекулы альдегида, и образуется сложный эфир:

Эта реакция иосит название реакции Тищенко, по имени открывшего ее русского ученого.

Образование ацеталей. При нагревании альдегидов со спиртами в присутствии небольших количеств минеральных кислот происходит реакция:

Полученное соединение носит название ацеталя и представляет собой как бы простой эфир неустойчивого двухатомного спирта:

Реакция образования ацеталей обратима. При гидролизе в присутствии кислот ацетали легко распадаются с образованием исходных альдегидов и спиртов. 4

Полимеризация. Альдегиды могут образовывать линейные или циклические полимеры, причем в обоих случаях остатки молекул альдегидов связываются между собой через атом

В качестве веществ, ускоряющих процесс полимеризации альдегидов, применяются минеральные, кислоты. Циклические полимеры при нагревании расщепляются на молекулы исходных альдегидов.

Способы получения. Окисление спиртов. Как мы уже знаем, при окислении первичных спиртов образуются альдегиды, при окислении вторичных - кетоны. Окисление можно проводить с помощью различных окислителей, например бихроматом калия в кислой среде или кислородом воздуха в присутствии катализаторов - платины, меди и др. В обоих случаях реакции протекают по схеме:

Получение из дигалоидпроиззодных углеводородов. Если оба атома галоида находятся у одного и того же углеродного атома, то при нагревании таких галоидпроизводных с водой или лучше со щелочью происходит образование альдегидов или кетонов:

Действие воды на ацетиленовые углеводороды (реакция Кучерова). При действии воды на ацетилен в присутствии солей двухвалентной ртути получается уксусный альдегид:

Гомологи ацетилена в этих условиях образуют кетоны:

Оксосинтез. Оксосинтезом называется способ получения кислородсодержащих органических соединений путем взаимодействия непредельных углеводородов с окисью углерода и водородом при повышенной температуре, в присутствии кобальтового катализатора и при давлении . В результате этого процесса образуются альдегиды, содержащие на один атом углерода больше, чем исходный олефин:

Муравьиный альдегид (формальдегид) Бесцветный газ с резким специфическим запахом; хорошо растворим в воде. Водный раствор формальдегида, содержащий формальдегида в раствора, носит название формалина. При выпаривании раствора формальдегид полимеризуется с образованием твердой смеси низкомолекулярных полиоксиметиленов (параформальдегид), под действием кислот вновь дающей формальдегид.

Формальдегид - первый член гомологического ряда альдегидов. В общей формуле

у формальдегида вместо алкильного радикала находится атом водорода. Поэтому некоторые химические свойства формальдегида резко отличаются от свойств других альдегидов этого ряда. Так, найример, при действии щелочей формальдегид в отличие других альдегидов жирного ряда, осмоляющихся щёлочами, образует метиловый спирт и соль муравьиной кислоты;

При этой реакции одна молекула формальдегида восстанавливается до спирта, а другая окисляется до кислоты.

Формальдегид в громадных количествах применяется для производства фенолоформальдегидных, карбамидных и других синтетических полимеров. Исключительно ценными свойствами обладает высокомолекулярный полимер формальдегида - полиформальдегид (стр. 327).

Значительное количество формальдегида идет на приготовление изопрена (2-метилбутадиена-1,3)-исходного вещества для получения синтетического каучука.

Процесс получения изопрена из формальдегида и изобутилена протекает в две стадии по схеме:

Вторая стадия процесса протекает при 200-220 °С в присутствии производных фосфорной кислоты в качестве катализатора.

Формальдегид служит исходным веществом для производства красителей, фармацевтических препаратов, синтетического каучука, взрывчатых веществ и многих других органических соединений. Формальдегид ядовит и даже в небольших концентрациях действует раздражающе на слизистые оболочки.

Формалин (водный раствор формальдегида) довольно широко применяется в качестве антисептика (обеззараживающего средства). Интересно, что консервирующее действие дыма при копчении продуктов питания (рыба, мясо) объясняют сильным антисептическим действием формальдегида, образующегося в результате неполного сгоранйя топлива и содержащегося в дыме в небольшом количестве.

Промышленным методом получения формальдегида является каталитическое окисление метанола. Метанол окисляют в газовой фазе кислородом воздуха при 500-600 °С:

В качестве катализаторов, применяются металлические медь или серебро, осажденные на инертном пористом носителе, или в виде металлической сетки. (В последнее время стали применять, более эффективный железоокисномолибденовый

катализатор.) Для понижения температуры процесса, что благоприятствует реакции окисления и увеличению выхода формальдегида, к метанолу добавляют 10-12% воды.

На рис. 15 приведена принципиальная схема получения формальдегида путем окисления Метанола.

В испаритель 2 поступают метанол из мерника 1 и очищенный воздух через воздуходувку 4. В испарителе жидкий метанол испаряется и смешивается с воздухом, в результате чего образуется паровоздушная смесь с содержанием метанола на смеси. Нагретая до 100 °С паровоздушная смесь поступает в контактный аппарат 6, в котором и происходит окисление метанола при

Рис. 15. Схема производства формальдегида окислением метанола: 1 - мерник; 2 - испаритель; 3 - фильтр; 4 - воздуходувка; 5 - подогреватель; 6 - контактный аппарат; 7 - холодильник; 8, 10 - абсорберы; 9 - промежуточный холодильник.

Продукты реакции направляются в холодильник 7, где они охлаждаются до 100-130 °С. Затем они поступают в абсорберы 8 и 10, в которых поглощается образовавшийся формальдегид.. Абсорбер 8 орошается разбавленным раствором формальдегида, поступающим из абсорбера 10, орошаемого водой. Таким образом, полученный формальдегид выходит из абсорбера в виде водного раствора, содержащего 37,6% формальдегида и около 10% метанола. Выход формальдегида около 80%. Отоходящие из абсорбера 10 газы содержат азот (около 70%), водород (около 20%) и небольшие количества метана, кислорода, окиси и двуокиси углерода.

В последнее время получил промышленное применение способ синтеза формальдегида путем неполногб окисления концентрированного метана кислородом воздуха:

Катализатором служат окислы азота. (Окисление проводят., при температуре около 600 °С.

Уксусный альдегид (ацетальдегид) СН3-СНО. Бесцветная жидкость с резким запахом, хорошо растворимая в воде; темп. кип. +21°С. Под действием кислот он легко полимеризуется в циклические полимеры - паральдегид (жидкость), и метальдегид (твердое вещество).

Уксусный альдегид является важнейшим исходным соединением для получения уксусной кислоты, синтетических полимеров, лекарственных соединений и многих других веществ.

В промышленности имеют наибольшее распространение следующие методы получения ацетальдегида:

1. Прямая гидратация ацетилена водяным паром в присутствии жидких ртутных катализаторов (по реакции Кучерова).

3. Прямое окисление этилена кислородом воздуха в присутствии жидких палладиевых катализаторов.

Гидратация ацетилена в присутствии ртутных катализаторов проводит путем пропускания ацетилена, смешанного с водяным паром при 90-100°С, в гидрататор, заполненный катализатором, так называемой «контактной» кислотой (раствор сернокислой ртути в серной кислоте). В гидрататор также поступает непрерывно или периодически) металлическая ртуть, образующая с серной кислотой сернокислую ртуть. Смесь ацетилена с водяным паром барботирует через кислотный слой; при этом происходит гидратация ацетилена и образование ацетальдегида. Парогазовую смесь, выходящую из гидрататора, конденсируют и выделенный ацетальдегид отделяют от примесей. Выход ацетальдегида (считая на ацетилен) достигает 95%.

При гидратации ацетилена в присутствии нертутных катализаторов ацетилен разбавляют азотом, смешивают с водяным паром и полученную парогазовую смесь пропускают при высокой температуре над нертутным катализатором, например окислами цинка, кобальта, хрома или других металлов. Продолжительность контакта парогазовой смеси с катализатором составляет доли секунды, вследствие этого отсутствуют побочные реакцииг что приводит к увеличению выхода ацетальдегида и получению более чистопб продукта.

Весьма перспективным промышленным методом получения ацетальдегида является прямое окисление этилена кислородом воздуха в присутствии жидких палладиевых катализаторов:

Реакция протекает по значительно более сложной схеме, чем это изображено выше, причем образуется целый ряд побочных продуктов. Процесс проводят в трубчатых реакторах при температуре около 120 °С и давлении .

Ацетон (диметилкетон) Бесцветная жидкость с характерным запахом, хорошо растворимая в воде, темп. кип. 56,1 °С.

Ацетон является прекрасным растворителем многих органических веществ, и поэтому широко применяется в различных отраслях промышленности (производство искусственного волокна, лекарственных препаратов и др.). Ацетон используютлгакже Для синтеза различных органических соединений.

Из ацетона и ацетилена А. Е. Фаворским был получен изопрен. Реакция протекает в три стадии:

Основным промышленным методом получения ацетона является получение его из изопропилбензола одновременно с фенолом (стр. 234).

Некоторое количество ацетона получается окислительным дегидрированием или дегидрированием изопропилового спирта.

Окислительное дегидрирование изопропилового спирта может быть проведено над серебряным катализатором при 450-500 °C:

В качестве побочных продуктов образуются двуокись углерода, пропилен и уксусная кислота. Этот процесс может проводиться также в жидкой фазе при атмосферном давлении и температуре около 150 °С:

Образующаяся перекись водорода используется для различных синтезов, например для получения глицерина из акролеина (стр. 96).

Дегидрирование изопропилового спирта проводят в паровой фазе при 350-400 °С в присутствии медного катализатора:

Практически все химические вещества, окружающие нас, тестируются человеком, исходя из его запросов и потребностей. Каждое соединение имеет уникальный, только ему присущий набор признаков и свойств, из которых отбираются полезные и необходимые нам в повседневной жизни. Альдегиды, о которых пойдет речь, также не являются исключением.

Скромное дитя органической химии

Среди соединений углерода, которые принято называть органическими, есть хорошо известные, которые как говорится, «у всех на слуху». Например, глюкоза, этиловый спирт или пластмассы. Альдегидам в этом смысле не повезло. О них известно разве что узким специалистам, да еще учащимся старших классов, усиленно штудирующим химию для поступления в вуз. На самом же деле такие соединения (как например, уксусный альдегид) химические свойства которого мы рассмотрим, широко используется как в промышленном производстве, так и в быту.

Яблоко раздора

Увы, но открытия в науке довольно часто происходят отнюдь не безоблачно. Альдегиды, их химическое строение и свойства были открыты в результате длительных споров и дискуссий в среде ученых XIX столетия. А такие известные химики как Либих и Дёберейнер даже не на шутку повздорили, выясняя, кому же на самом деле принадлежит пальма первенства в получении и выделении в чистом виде уксусного альдегида. Его добыли из паров этилового спирта, пропущенных над платиновой сеткой, служащей катализатором реакции. Единственное, что смогло примирить оппонентов, так это безоговорочное принятие всеми химиками названия нового класса веществ - альдегиды, что дословно обозначает «безводородные алкоголи». Оно указывает на способ получения их из спиртов реакцией отщепления двух атомов водорода.

Ни с чем не перепутаешь

Рассматривая физические и химические свойства альдегидов, легко убедиться, что они достаточно специфичны. Так, формальдегид, являющийся токсичным газом, имеет резкий удушающий запах. Его 40%-ый водный раствор, называемый формалином, служит причиной особенного запаха в анатомических лабораториях и моргах, где его применяют как антигнилостное средство, консервирующее белки органов и тканей.

А уксусный альдегид, являющийся следующим в гомологическом ряду, представляет собой хорошо растворимую в воде бесцветную жидкость с неприятным запахом прелых яблок. Альдегиды, химические свойства, которых характеризуются реакциями окисления и присоединения, могут превращаться в вещества генетически близких классов: карбоновых кислот или спиртов. Рассмотрим их на конкретных примерах.

Визитная карточка альдегидов

В органической химии, как, впрочем, и в неорганической, существует такое понятие как «качественная реакция». Её можно сравнить с маяком, сигнализирующим о том, что мы имеем дело именно с веществами конкретного класса, например, с альдегидами. Подтверждают химические свойства альдегидов реакции с аммиачным раствором оксида серебра и с гидроксидом меди при нагревании (реакция серебряного зеркала)

Продуктом реакции будет чистое серебро, выделившееся в виде зеркального слоя на стенках пробирки.

В результате реакции выпадает осадок кирпичного цвета - закись меди.

Вещества-двойники

Сейчас подошло время разобраться с таким явлением, характерным для всех органических веществ, в том числе и для альдегидов, как изомерия. Она напрочь отсутствует в мире неорганической химии. Там все просто: одной химической формуле соответствует только одно конкретное соединение с присущими ему физическими и химическими свойствами. Например, формуле HNO 3 соответствует одно вещество, называемое нитратной кислотой, имеющее температуру кипения 86°С, с едким запахом, очень гигроскопичное.

В царстве же органической химии живут-поживают вещества-изомеры, у которых формулы одинаковы, а свойства различны. Например, формулу C 4 H 8 O имеют два совершенно разных альдегида: бутаналь и 2-метилпропаналь.

Формулы их:

Изомерные альдегиды, химические свойства, которых зависят от их состава и строения, служат прекрасным доказательством гениальной теории строения органических соединений, созданной российским ученым М. Бутлеровым. Его открытие имеет такое же фундаментальное значение для химии, как периодический закон Д Менделеева.

Уникальный углерод

Прекрасным доказательством, подтверждающим теорию М. Бутлерова служат химические свойства альдегидов. Органическая химия, благодаря исследованиям российского ученого, наконец смогла ответить на вопрос, изводивший своею сложностью не одно поколение ученых, а именно: как объяснить поражающее воображение многообразие органических соединений, в основе которого лежит явление изомерии. Рассмотрим строение молекул двух альдегидов-изомеров: бутаналя и 2-метилпропаналя, имеющих одну и ту же молекулярную формулу - C 4 H 8 O, но различные структурные, а значит, отличающиеся друг от друга физическими и химическими свойствами.

Обратим внимание на две важнейшие особенности атома углерода, которые введены как постулаты в теорию М. Бутлерова:

1. Углерод в органических соединениях всегда четырёхвалентен.

2. Атомы углерода способны соединяться друг с другом и образовывать различные пространственные конфигурации: неразветвленные и разветвленные цепи или циклы.

На них, согласно валентности, нанизываются атомы других химических элементов: водорода, кислорода, азота, образуя, таким образом, весь гигантский арсенал существующих органических соединений (а их более 10 млн.) К тому же количество постоянно увеличивается за счет новых веществ, получаемых в химии органического синтеза.

Чем полярнее, тем лучше

Продолжая изучать альдегиды, их химическое строение и свойства, остановимся на явлении полярности атомов, входящих в состав молекул альдегидов. Так, атом углерода альдегидной группы в молекуле уксусного альдегида приобретает частичный положительный заряд, а атом кислорода - частичный отрицательный. Причина их возникновения лежит в следующем: электронная плотность π-связи является более подвижной, чем σ-связь.

В общей формуле альдегидов, где R -углеводородный радикал, связанный с альдегидной группой, на атоме кислорода образуется частичный отрицательный заряд, а на атоме углерода - частичный положительный. Таким образом, функциональная группа альдегидов становится сильно поляризованной, что обуславливает большую реакционную способность этих веществ. Проще говоря, чем больше поляризованы атомы в молекуле вещества, тем лучше и быстрее оно вступает в химические реакции. Быстрая окислительная способность атома водорода в альдегидной группе и реакционная активность карбонильной группы обеспечивает альдегидам характерные им реакции присоединения и полимеризации.

Жизнь в пластмассовом мире

Именно альдегиды, химические свойства которых обусловлены способностью к реакциям поликонденсации и полимеризации, стали родоначальниками фенопластов и аминопластов - базовых материалов современной индустрии полимеров. Сырьем для ее предприятий служат формальдегид и уксусный альдегид. Так, из фенолформальдегидных смол получают фенопласты - важнейшие заменители черных и цветных металлов. Формальдегид получают окислением метана при нагревании его до 600°С в смеси с воздухом, а также окислением нагретого до 300°С метанола над медным катализатором. Таким образом, альдегиды, получение и химические свойства, которых мы рассматриваем, являются важным сырьем в реакциях органического синтеза.

Делаем выводы

Как видим, в послужном списке альдегидов достаточно необходимых и важных веществ, таких как, например, формальдегид и уксусные альдегиды, химические свойства которых человек с успехом использует в различных сферах своей жизнедеятельности.

Альдегиды и их химические свойства

Альдегидами называют такие органические вещества, в молекулах которых есть карбонильная группа, связанная, минимум, с одним атомом водорода и углеводородным радикалом.

Химические свойства альдегидов предопределяются в их молекуле наличием карбонильной группы. В связи с этим в молекуле карбонильной группы можно наблюдать реакции присоединения.

Так, например, если взять и пропустить пары формальдегида разом с водородом над разогретым никелевым катализатором, то произойдет присоединение водорода и формальдегид восстановиться в метиловый спирт. Кроме этого полярный характер данной связи порождает и такую реакцию альдегидов, как присоединение воды.

А теперь давайте рассмотрим все особенности реакций от присоединения воды. Следовало бы отметить, что к углеродному атому карбонильной группы, который несет частичный положительный заряд, благодаря электронной паре кислородного атома, добавляется гидроксильная группа.



При таком присоединении характерны следующие реакции:

Во-первых, происходит гидрирование и образуются первичные спирты RСН2ОН.
Во-вторых, происходит добавление спиртов и образование полуацеталей R-СН (ОН) – ОR. А в присутствии хлороводорода НСl, выступающего катализатором и при излишке спирта мы наблюдаем образование ацетали RСН (ОR)2;
В-третьих, происходит добавление гидросульфита натрия NаНSO3 и образуются производные гидросульфитных альдегидов. При окислении альдегидов можно наблюдать такие особенные реакции, как взаимодействие с аммиачным раствором оксида серебра (I) и с гидроксидом меди (II) и образование карбоновых кислот.

При полимеризации альдегидов характерны такие особенные реакции, как линейная и циклическая полимеризация.

Если говорить о химических свойствах альдегидов, следует упомянуть и реакцию окисления. К таким реакциям можно отнести реакцию «серебряного зеркала» и реакцию светофор.

Пронаблюдать за необычной реакцией «серебряного зеркала» можно, проведя в классе интересный опыт. Для этого вам понадобиться чисто вымытая пробирка, в которую следует налить несколько миллилитров аммиачного раствора оксида серебра, а потом к нему добавить четыре или пять капель формалина. Следующим этапом при проведении этого опыта нужно пробирку поместить в стакан с горячей водой и тогда вы сможете увидеть, как на стенках пробирки появляется блестящий слой. Это образовавшееся покрытие является осадком металлического серебра.



А вот так называемая реакция «светофор»:



Физические свойства альдегидов

Теперь давайте приступим к рассмотрению физических свойств альдегидов. Какими же свойствами обладают эти вещества? Следует обратить внимание на то, что ряд простых альдегидов являют из себя бесцветный газ, более сложные представлены в виде жидкости, а вот высшие альдегиды – это твердые вещества. Чем больше молекулярная масса альдегидов, тем выше температура кипения. Так, например, пропионовый альдегид достигает точки кипения при 48,8 градусов, а вот пропиловый спиртзакипает при 97,8 0С.

Если говорить о плотности альдегидов, то она меньше единицы. Так, например, уксусный и муравьиный альдегид имеет свойство неплохо растворяться в воде, а более сложные альдегиды имеют более слабую способность к растворению.

Альдегиды, которые относятся к низшему разряду, имеют резкий и неприятный запах, а твердые и нерастворимые в воде, наоборот характеризуются приятным цветочным запахом.

Нахождение альдегидов в природе

В природе, повсеместно встречаются представители различных групп альдегидов. Они присутствуют в зеленых частях растений. Эта одна из простейших групп альдегидов, к которым относится муравьиный альдегид СН2О.

Также встречаются альдегиды с более сложным составом. К таким видам относятся ванилин или виноградный сахар.

Но так как альдегиды обладают способностью легко вступать во всякие взаимодействия, имеют склонность к окислению и восстановлению, то можно с уверенностью сказать, что альдегиды очень способны к различным реакциям и поэтому в чистом виде они встречаются крайне редко. А вот их производные можно встретить повсеместно, как в растительной среде, так и животной.



Применение альдегидов

Альдегидная группа присутствует в целом ряде природных веществ. Их отличительной чертой, по крайней мере, многих из них, является запах. Так, например представители высших альдегидов, владеют различными ароматами и входят в состав эфирных масел. Ну и, как вам уже известно, такие масла присутствуют в цветочных, пряных и душистых растениях, плодах и фруктах. Они отыскали масштабное использование в производстве промышленных товаров и при производстве парфюмерии.

Алифатический альдегид СН3(СН2)7С(Н)=О можно найти в эфирных маслах цитрусовых. Такие альдегиды имеют запах апельсина, и применяется в пищевой промышленности, как ароматизатор, а также в косметике, парфюмерии и бытовой химии, в качестве отдушки.

Муравьиный альдегид – это бесцветный газ, который имеет резкий специфический запах и легко растворяется в воде. Такой водный раствор формальдегида еще называют формалином. Формальдегид очень ядовит, но в медицине его применяют в разбавленном виде в качестве дезинфицирующего средства. Его используют для дезинфекции инструментов, а его слабый раствор используют для обмывания кожи при сильной потливости.

Кроме того, формальдегид используют при дублении кожи, так как он имеет способности соединяться белковыми веществами, которые имеются в составе кожи.

В сельском хозяйстве формальдегид прекрасно зарекомендовал себя при обработке зерна перед посевными работами. Его применяют для производства пластмасс, которые так необходимы для техники и бытовых нужд.

Уксусный альдегид являет из себя бесцветную жидкость, которая имеет запах прелых яблок и легко растворяется в воде. Применяется он для получения уксусной кислоты и других веществ. Но так как он является ядовитым веществом, то может вызвать отравление организма или воспаление слизистых оболочек глаз и дыхательных путей.