Виброметр – простой прибор для измерения вибрации. Датчики вибрации в схемах для мк Сборник схем датчиков вибрации низковольтных


Сегодня мы с вами поговорим о такой интересной штуке, как датчик вибрации, область ее применения зависит от вашей фантазии. Я, например, использовал его как датчик, для приклеив его к рамке, на которой установлена дверь. Теперь поговорим о самом устройстве. Схема датчика была разработана лично мной, и ее нет нигде в интернете - только на нашем сайте. Характеристики ее следующие: устройство начинает работать сразу после правильной сборки – то есть, не нуждается ни в каких настройках, которые мы с вами так не любим, чувствительность просто потрясающая - с десяти метров от него, исполняя какой нибудь танец, микроамперметр или светодиод начнет подтанцовывать вместе с вами. Вот сама схема датчика вибрации:

Микросхему LM358 использовал, так как она, на мой взгляд, является самым распространенным операционным усилителем, есть она в любом радиомагазине, и стоит копейки. В крайнем случае, ее можно выдрать из краба – универсального зарядного для аккумуляторов мобильных телефонов или из автомобильной сигнализации – там они часто встречаются в приемной части, еще можно заменить на LM324 – у нее плюс питания на четвертую ногу, а минус на одиннадцатую при этом конечно уже не соединяем восьмую и четвертую. Пьезодинамик покупаем или достаем из убитых калькуляторов, наручных часов, велосипедных пищалок и прочих пиликающих игрушек. Микроамперметр бывает в советских магнитофонах, усилителях или авометрах (древних тестерах). Пьезик можно заменить на светодиод или небольшой динамик с малым током потребления (около 20-ти миллиампер, тогда убираем R6). Резисторы R3, R5 – могут быть в пределах 1к до 3к3, главное чтоб они были одинакового номинала. Резистор R4 - влияет на чувствительность, меньше сопротивление - выше чувствительность (минимальное что я ставил 0, 33 ом – это подкрадываясь почувствует на расстоянии 5-6 метров). R1, R2 в пределах 47к … 220к тоже оба с одинаковыми номиналами. R6 как ограничение тока, подходит для микроамперметра и светодиода. Конденсаторы C1 и C2 от 1мк до 47мк. Питание датчика вибрации
возможно даже от литиевого аккумулятора 3,7 вольта, тогда для светодиода можно будет убрать R6. В принципе всё, если собрали все необходимые детали - можно начинать сборку. Собираем сначала схему датчика на ОУ и не трогаем пьезодинамик. Вариант изготовления платы смотрим здесь:

Теперь разбираемся с пьезо динамиком. У него есть середина из пьезоэлемента с напылением сверху для пайки, и пластина (обычно бронзовая или никелированное железо) на которой с одной стороны та самая середина из пьезоэлемента. Припаиваем к середине пьезоэлемента провод, другой его конец провода припаиваем к выводу 3 микросхемы, потом припаиваем пластину прямо на плату, а на противоположной от платы стороне к пьезодинамику прикрепляем пружину (для большей чувствительности) смотрим рисунок. Итак, датчик вибрации собран, можно проверять. Подключаем питание и ждем, пока пружина не успокоится. Когда на выходе будет "0” (не светится светодиод или микроамперметр показывает "0”), щелкаем пальцами или хлопаем, датчик должен отреагировать. Если все работает – отлично, если нет, проверьте, нет ли замыканий, правильно ли все соединили. Микросхема вообще должна быть рабочей, даже если вы ее выпаяли из какого нибудь устройства (на ней нет никакой нагрузки). Если интересно как этот датчик работает, читаем тут. У операционного усилителя есть два входа (один из них называют "+” другой "-”) и один выход. Если подаем на вход "+” напряжение больше чем на вход "-", на выходе имеем "+” если же наоборот на выходе будет "-". По схеме напряжение входе "+” меньше чем на входе "–" на пару милливольт и поэтому на выходе имеем "-". Теперь пьезо динамик - такая крутая вещь, что преобразует звук или вибрацию в напряжение (у меня от пьезодинамика даже светодиод светился, просто ударяя по нему карандашом), и он при вибрации увеличивает напряжение на входе "+”и, следовательно, имеем на выходе тоже "+”. Заранее благодарю за повторение моих конструкции. Автор статьи - Леша "левша", устройство испытал: АКА.

На основе простого керамического пьезоэлектрического детектора можно собрать интересный и полезный модуль датчика физического воздействия, который может применяться на дверях, витринах и окнах для обнаружения вибраций и ударов.


Сам датчик удара (керамический пьезоэлектрический детектор) имеет «униморфную» диафрагму, которая состоит из пьезоэлектрического керамического диска, спаренного с металлическим диском. Датчик подает напряжение, пропорциональное ускорению удара или вибрации. Например, при 40 мВ/G получим около 2 В, если удар будет с ускорением 60 G.



В данном случае представлен низковольтный, низкотоковый модуль датчика физического воздействия на основе стандартного керамического пьезоэлектрического детектора, который заставляет цепь одновибратора (IC1) активировать кремниевый npn-транзистор. Выход с открытым коллектором этого транзисторного ключа можно подключить к внешней цепи сигнализации для дальнейшей работы с полученным сигналом. Поскольку потребление тока здесь очень мало (от 5 до 6 мА), саму схему можно питать от батарейки 3 В. При обнаружении физического воздействия одновибратор включит транзистор на время, определяемое RC-цепочкой, состоящей из R3 и C2.


Микросхема M74HC123 (IC1) является высокоскоростным двойным перезапускаемым КМОП-одновибратором с входами, защищенными от статического разряда и переходных скачков напряжения. Здесь имеются два входа пусковых импульсов, отрицательный фронт и положительный фронт. В данном случае используется только часть с положительным фронтом запуска (вывод 2). После запуска, выход на период времени, определяемым внешним резистором R3 и конденсатором С2, поддерживает моностабильного состояние.

Перевод сайт




   Благодарим Вас за интерес к информационному проекту сайт.
   Если Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы,
   Вы можее поддержать наш проект, пожертвовав любую сумму на его развитие.


Конечно, можно приобрести охранный блок в магазине. На рынке представлены различные девайсы. Но что делать, если вы не хотите переплачивать за разные опции. К тому же руки у вас растут откуда нужно. Нет проблем!

Можно собрать вполне приемлемый вариант самому. У этой автосигнализации нет ничего лишнего: управления центральным замком, радиобрелка. Зато самоделка обезопасит ваш автомобиль от проникновения при помощи концевых выключателей дверей и багажника. А также при помощи датчика удара-вибрации предупредит владельца об откручивании, например, колёс. Кстати, знаете ли вы, что отключить злоумышленнику такого рода сигнализацию гораздо сложнее. Он ведь не знает, что вы там могли внедрить. К тому же при отсутствии брелка степень защиты во много раз повышается,так как автожулики не смогут считать код (ведь известно, что большинство взломов происходит этим методом).

Схема устройства

Принцип работы заключается в следующем. Сигнал с A1 датчика вибрации поступает на усилитель, который выполнен на VT1, VT2 и управляет тиристором VS1. На базу транзистора VT2 также поступает сигнал от концевых выключателей дверей, капота, багажника. На транзисторах VT3,VT4 собран таймер, который управляет анодом тиристора VS1. В цепи базы VT3 используется конденсатор большой ёмкости C3. Благодаря чему при постановке на охрану надёжно спрятанном тумблером C3 начинает заряжаться через сирену автомобиля и цепь из резисторов R6,R7. В процессе заряда конденсатора VT3,VT4 будут закрыты, следовательно, тиристор VS1 заперт. Благодаря чему схема встаёт под охрану с некоторой задержкой, давая водителю время покинуть авто и закрыть дверь.

По прошествии 20 секунд конденсатор C3 набирает ёмкость, VT3 открывается и включает охрану в работу. Предположим, произошло воздействие на автомобиль или вскрытие какой-либо двери. Тиристор VS1 отпирается, начинает заряжаться C4 через VS1, VT4, R10. Тиристор устроен таким образом, что он остаётся открытым при прохождении постоянного тока. При закрывании двери (прекращении сигналов) тревожная сирена будет извещать владельца о проникновении. Если срабатывание датчиков произошло с появлением владельца, то за время заряда C4 (20 секунд) он отключит замаскированный тумблер. Если этого не сделать, то откроются VT5,VT6, включится реле KV1 , которое в свою очередь подключит сирену. Чтобы не беспокоить соседей и самому не бежать к автомобилю во время ложных срабатываний, как например проезжающий мимо грузовик, в данной автосигнализации реализована функция ограничения времени тревоги. Действует она следующим образом. Когда контакты KV1 замкнуты и ток протекает через R6,R7 , заряжается конденсатор C3. Через небольшое время закроются VT2, VT3, VS1, VT5, VT6 и реле KV1 отключится и снова возьмёт под охрану.

Какие детали можно использовать для реализации схемы. Требования к ним не критичные. Конденсаторы и резисторы любого типа, желательно малогабаритного. Реле KV1 с рабочим напряжением 12 вольт и током катушки в пределах 100 мА.Силовые контакты реле должны выдерживать ток в 5 А. Но можно снизить до 0,5 А, если применить промежуточное реле.

Датчик вибрации A1 не сложно изготовить самому. Он выполнен в виде катушки со стальным сердечником, от которого на небольшом расстоянии закреплен постоянный магнит на плоской пружине. При малейшем ударе по кузову автомобиля колебания через пружину передадутся на магнит. Тот в свою очередь создаст переменное магнитное поле, которое наведёт ЭДС в катушке. Последняя размером Ø10Χ15 мм мотается на сердечнике Ø3 мм из стали. Для обмотки используют медный провод 0,06...0,07 мм. Магнит с размерами 25Χ10Χ5 мм при помощи клея и ниток нужно закрепить на пружине. В качестве которой можно использовать пружину от будильника. Длина последней выбирается в пределах 60 — 80 мм. В процессе сборки датчика удара следует обратить внимание на то, чтобы магнит мог располагаться как можно ближе к боковой стороне катушки. Готовый датчик вибрации следует располагать в пространстве так, чтобы магнит имел возможность совершать колебания перпендикулярно поверхности земли.

Самодельный датчик вибрации

Теперь остаётся самое главное — спрятать тумблер, через который подаётся питание на схему. К этому вопросу стоит подойти с не меньшей ответственности. Поскольку вам придётся пользоваться им постоянно, ну а злоумышленник не должен его обнаружить.

в качестве датчиков вибрации радиолюбители часто используют пьезокерами- ческие излучатели серии ЗП, больше известные как звуковые «пищалки». Ошибки здесь нет. Пьезоизлучатели являются обратимыми приборами, т.е. они могут генерировать звук (основная функция) или улавливать внешние звуковые колебания (дополнительная функция).

Если корпус «пьезопищалки» жёстко закрепить на шасси исследуемого объекта, то любые щелчки, удары, вибрация будут преобразовываться в переменное или импульсное электрическое напряжение. Полезный сигнал обычно имеет малую амплитуду, поэтому между МК и пьезодатчиком ставят предварительный усилитель. Кроме усиления он играет роль буферной защиты, поскольку резкий и сильный удар по пьезопластине может вызвать короткий импульс очень большой амплитуды, способный повредить МК.

Вместо «пищалок» также используют высокочувствительные промышленные пьезодатчики, применяемые в охранных сигнализациях. Кроме того, в чулане или на чердаке может залежаться старый проигрыватель грампластинок. Его пьезоголовка тоже подходит для экспериментов как хороший высокоомный датчик.

На Рис. 3.31, а…к показаны схемы подключения датчиков вибрации к МК.

Рис. 3.31. Схемы подключения датчиков вибрации к МК {начало):

а) датчик вибрации НА! w МК соединяются между собой через двухкаскадный усилитель на транзисторах VT1, VT2. Резисторами R1, /? J устанавливают максимальную чувствительность датчика при отсутствии самовозбуждения усилителя;

б) транзисторный усилитель с диодным детектором, удваивающим амплитуду сигнала. Резистором /?/регулируют симметричность ограничения сигнала на коллекторе транзистора VT1\

в) аналогичнРис. 3.31, б, но с дополнительным транзисторным усилителем, с регулятором чувствительности /?2и с другими номиналами радиоэлементов;

г) резистором R1 подбирается рабочая точка транзистора VT1 по максимальной досто1юрно- сти срабатывания датчика вибрации НА 1 (например, если он слишком чувствительный);

Рис. 3.31. Схемы подключения датчико!^ вибрации к МК {окончание):

д) необычное применение телевизионной микросхемы DA 1 в качестве входного усилителя;

е) диоды VD1, KZ)2 защищают транзистор КГ/от всплесков напряжения пьезодатчика НА1, а также от электростатических разрядов. Резистором R1 задают оптимальный режим для АЦП;

ж) датчик для автомобильного стетоскопа. Диоды VDJ, К/)2ограничивают входной сигнал на уровне ±(0.7…0.9) В. Резистором /?2 выставляется рабочая точка АЦП МК примерно в середине передаточной характеристики. Доработка датчика НА 1 заключается в его утяжелении;

з) подключение пьезодатчика к быстродействующему компаратору DA1, имеющему «цифровой» выход с открытым коллектором. Напряжение входного сигнала должно быть не более 5 В;

и) Я/4/ -это вибродатчик музыкальной ударной установки. Питание микросхемы DAlw МК осуществляется от разных напряжений. Вместо пьезодатчика может без изменения схемотехники использоваться оптодатчик с перекрывающимся световым каналом;

к) резистором R! регулируют порог срабатывания сигнала отдатчика вибрации НА1.

Датчик вибрации своими руками — дополненный простой системой крепления и несколькими спаянными «на весу» компонентами, пьезоэлемент может детектировать механические удары. Собственно датчик состоит из керамического пьезоэлемента и тонкого латунного диска. Такого рода сборка раньше использовалась во многих телефонных аппаратах в качестве источника вызывного сигнала или в наручных часах с будильником.

В зависимости от способа монтажа, датчик может воспринимать удары в направлении одной оси (Рисунок 16) или трех (Рисунок 16). Для одно осевого измерения припаяйте один край датчика к завернутому в монтажное основание винту. На противоположный край припаяйте груз, чтобы увеличить чувствительность датчика. Пара небольших крючков, прикрепленных к основанию, ограничивает движение датчика, не допуская поломки пьезоэлемента.

Если вы хотите, чтобы система была чувствительна к ударам в трех измерениях, один край датчика припаяйте к винту точно так же, как в первом случае. На другой край припаяйте винт с плоской потайной головкой, направленный в сторону, противоположную монтажному основанию. Используйте пару контр-гаек, чтобы увеличить полярный момент инерции конструкции. Положение контр-гаек определяет чувствительность пьезоэлемента. В обоих случаях, для того чтобы не нарушить соединение пьезоэлемента с латунным диском, время пайки должно быть минимально возможным.

На Рисунке 2 изображена простая схема сигнализации. При хорошем щелчке по пьезозлементу на 10-мегаомном резисторе R1 возникнет напряжение в несколько вольт. После этого микросхема сдвоенного таймера 1с1 в течение одной минуты будет включать питание звукового излучателя с периодичностью 1 с. Излучатель звука имеет собственную встроенную схему управления, генерирующую пронзительный сигнал со звуковым давлением 90 дБ.