Старт в науке. Как электричество попадает в дом Электричество в домах от куда


В настоящее время человечество использует множество бытовых электроприборов, не говоря уже о производстве, используя электроэнергию. Электричество очень быстро стало неотьемлемой частью нашей жизни. Но откуда берется так необходимая нам электроэнергия? Даже дети знают,что ее производят электростанции. А вот как она поступает от электростанции к нам в дом?
Основные виды электростанций: АЭС, ГЭС, ТЭС. На строительных площадках,больницах и иногда в частных домах используют дизельные установки и миниэлектростанции. В Европе для получения электроэнергии используют энергию ветра и солнца. Ученые всего мира также работают над альтернативными видами электроэнергии, такими как реакция синтеза, электростанции на биомассе. metatrader nordfx кабинет трейдера


В нашей стране основными источниками электроэнергии являются АЭС, ГЭС и ТЭС. Более половины электроэнергии производят тепловые электростанции. В городах могут также использоваться теплоэлектроцентрали, которые обеспечивают город не только электроэнергией, но и горячей водой и теплом. Наиболее дешевую электроэнергию производят гидроэлектростанции.

Атомные электростанции - современные источники электричества. Их возможно размещать, практически,в любом месте. АЭС не загрязняют окружающую среду, если выполнены все требования при их постройке.

Как же попадает ток в наши дома? Что же происходит дальше? Электроэнергия с электросъемных шин и кабелей подается в электрическую часть электростанции, которая бывает открытого, закрытого и комбинированного типа. В электрочасти находится диспетчерский пункт управления электростанцией, автоматизированная система управления технологическим процессом (АСУ ТП), коммутационные аппараты, релейная защита, контрольно - измерительные приборы и сигнализации, высоковольтные повышающие и понижающие трансформаторы, высоковольтные выключатели, сборные шины и автотрансформаторы. После преобразования энергии электричество подаётся на высоковольтную линию электропередач (ВЛЭП). Линии электропередач, передающие электроэнергию на большие расстояния, должны иметь большую пропускную способность и малые потери. Они состоят из проводов, крепёжной арматуры, опор, грозозащитных тросов, а также вспомогательных устройств. По своему назначению ЛЭП подразделяются на сверхдальние, магистральные и распределительные. Основными элементами воздушных линий электропередач являются металлические опоры, которые устанавливаются на определенном расстоянии друг от друга. Они бывают анкерными, промежуточными и угловыми. Анкерные опоры устанавливают в начале и конце линии электропередач, а также в местах перехода инженерных сооружений или естественных преград. Промежуточные опоры устанавливаются на прямых участках и предназначены для поддержки проводов с допустимым провисанием 6-8 метров в населённой местности, и 5-7 метров - в не населённой. Угловые опоры устанавливаются на углах поворота линии электропередач. Специальные транспозиционные опоры устанавливаются для изменения порядка расположения проводов на опорах, а так же для ответвления проводов от магистральной линии ВЛЭП. Для передачи электроэнергии в высоковольтных линиях электропередач применяются неизолированные провода, изготовленные из алюминия и сталеалюминия следующих марок: АН, АЖ, АКП (алюминиевые) и ВЛ, АС, АСКС, АСКП, АСК (сталеалюминевые). Провода к опорам крепятся при помощи поддерживающих или натяжных изоляторов, которые монтируются на опору подвесным способом, и крепёжной арматуры. Изоляторы бывают фарфоровые, с покрытием из глазури, стеклянные, из закалённого стекла, и полимерные, из специальных пластических масс. Для защиты линии электропередач от молнии на опорах натягиваются грозозащитные тросы, устанавливаются разрядники, а опоры заземляются. Так как линия обычно тянется на большое расстояние, то во избежание потерь напряжения используются промежуточные подстанции с повышающими трансформаторами.

Для дальнейшего распределения электроэнергии к магистральным ВЛЭП подключаются распределительные подстанции, которые в свою очередь раздают электроэнергию на понижающие подстанции. При распределении электроэнергии от подстанции к КТП может использоваться 2 типа прокладки : воздушный и под землей. При воздушной прокладке обычно используют алюминиевые или сталемедные неизолированные провода, которые подвешиваются на опорах. На прокладку под землей используется силовой кабель с медными или алюминиевыми токопроводящими жилами и броней, защищающая от механических воздействий. К кабелям такого типа относятся марки, предназначенные для эксплуатации на напряжение до 35 кВ, например АСБл или СБЛ (6-10 кВ), ПвПБв. Если трансформаторная подстанция находится на далеко, то используют воздушную прокладку.

От понижающей подстанции по линиям электропередач энергия распределяется между КТП, которые разделяются на мачтовые и киосковые (проходные и тупиковые). Комплектные трансформаторные подстанции осуществляют понижение напряжения с 10(6) до 0,4 кВ переменного тока частотой 50 Гц и предназначены для подачи электроэнергии в частные дома, отдельные населенные пункты или небольшие промышленные объекты. В мачтовых трансформаторных подстанциях ввод и вывод кабеля осуществляется при помощи воздушных линий. КТП киоскового типа устанавливаются в простейшую бетонную площадку и позволяет осуществлять ввод и отвод воздушным и подземным путем.

Для отвода воздушных линий используется самонесущие алюминиевые изолированные провода СИП, которые подвешиваются на деревянных или бетонных опорах при помощи монтажной арматуры. Такой способ прокладки распределительной линии используется в частных секторах, гаражных кооперативах или там где необходимо запитать большое количество потребителей находящихся на некотором расстоянии друг от друга. Для прокладки подземных линий используется с алюминиевыми или медными жилами, с изоляцией из различных материалов, экранированный, бронированный, с защитным покровом или без него. В зависимости от способа прокладки могут использоваться различные марки кабеля. Для прокладки в специальных двустенных гофрированных трубах могут использоваться силовые кабели без защитного покрова и брони, такие, как или Для прокладки в траншеях используются кабели с броней и защитными покровами, которые имеют хорошую защиту от физического и механического воздействия. Это такие кабели как АВБбШв и (с броней и защитным покровом) или АВВБГ и ВВБГ(с броней без защитного покрова). В зависимости от характера блуждающих токов, возможно использовать силовые кабели с различными видами экранов, которые предназначены для прокладки, как в траншеях, так и в защищенных трубах. К таким кабелям относятся марки АПвЭгП или АпвАШв.
Электроэнергия от трансформаторной подстанции по проводам передается на распределительные пункты, находящиеся в специальных комнатах (щитовых). В щитовых устанавливаются распределительные устройства, которые не только обеспечивают передачу электроэнергии в квартиры, но также осуществляют запитку этажного и аварийного освещения, лифтов, систем вентиляции, кондиционирования и систем безопасности. Распределение от электрощитовой до этажных щитов, осуществляется кабелями, которые не должны распространять горение и имеют низкие показатели дымо и газовыделения. К таким маркам кабелей можно отнести (алюминиевые токопроводящие жилы), (медные жилы).

Для магистральной линии используется лестничный лоток и специальные крепежные скобы, которые обеспечивают сохранность кабеля на весь срок службы. Для подвода питания от щитовой на этажные щиты применяют шинопровод. Шинопровод имеет ряд плюсов относительно кабельной магистральной линии. Один из плюсов - удобство монтажа (секции легко собираются и монтируются в нишу), К тому же он имеет меньшие габариты по сравнению с кабельной линией, удобство дальнейшей эксплуатации. И, наконец, от этажных щитов электроэнергия поступает на счетчик либо щит учетно-распределительный щит квартиры.

Невозможно представить современный мир без электричества. Именно благодаря электроэнергии люди живут в комфортных условиях, а в науке происходят новые открытия. Электричество способствует все большей модернизации и росту экономики. Электрическая сеть окутала всю планету, расширяясь все больше.

Где же появляется электричество и откуда оно приходит в наш дом?

В целом, электрическую сеть можно разделить на две группы установок – для создания электроэнергии и для её передачи. В классическом понимании, главными источниками производства электрической энергии являются электростанции. В зависимости от источника энергии, они делятся на:

  1. Атомные (АЭС ).
  2. Тепловые (ТЭС ) работают на органическом топливе: газовые, дизельные, бензиновые, угольные, торфяные.
  3. Гидроэлектростанции (ГЭС ) работают на воде.
  4. Ветроэлектростанции (ВЭС ).
  5. Солнечные электростанции (СЭС ).

От электростанций идут линии электропередач (ЛЭП), по которым и передается электрическая энергия посредством электрического тока. ЛЭП бывают воздушными и кабельными. Воздушные передают электроэнергию по проводам, которые находятся на открытом воздухе и прикреплены к различным опорам. В зависимости от напряжения тока и назначения, они бывают:

  1. Сверхдальние магистральные линии сверх- и ультравысокого напряжения (выше 500 кВ) – предназначены для отдельных регионов стран.
  2. Региональные линии среднего и высокого напряжения (от 1 до 500 кВ) обслуживают крупные объекты (города, гигантские предприятия, месторождения).
  3. Районные распределительные линии низкого напряжения (до 1000 В) для предприятий, транспортных узлов и поселковых сетей.
  4. Воздушные линии до 20 В приводят электроэнергию к потребителям.

Кабельные ЛЭП передают энергию по нескольким параллельным кабелям. Они проходят под землей, под водой и в помещениях. В этих ЛЭП напряжение бывает не выше 220 кВ.

ЛЭП передают электроэнергию от электростанций к электрическим подстанциям. Они преобразовывают и распределяют электричество уже по жилым домам. Первичные подстанции опускают высоковольтное напряжение до среднего уровня (до 50 кВ), а вторичные подстанции опускают напряжение еще ниже (до 380 В), чтобы им уже свободно мог пользоваться потребитель.

Первичные подстанции стоят в городах, в микрорайонах мегаполиса, в поселках городского типа и подают электричество на территорию, где проживает несколько десятков тысяч человек. Вторичные подстанции расположены около домов и питают электроэнергией большой жилой дом. Вторичные подстанции еще называют главным распределительным щитом. От него электричество идет к этажным, квартирным щиткам или электрическим щиткам для частного дома.

На видео видна схема откуда электричество поступает в дом

В последние 10-15 лет все активней развивается и другая схема поступления электроэнергии в дом, когда владельцем жилья используется собственный альтернативный источник электричества. Например, солнечная панель или ветрогенератор.

Солнечная панель может быть размещена как на территории собственного участка, так и на крыше строений. В последние 5 лет популярными становятся и небольшие панели, которые можно крепить на балконе или в лоджии, тем самым создавая резервный источник электричества и для квартиры.

Ветрогенератор устанавливается на крыше дома или на участке.

Такие источники электричества могут работать автономно, не будучи зависимыми от общей сети. Через специальный модуль подключения они работают с современными накопителями электроэнергии и могут полностью обеспечить электроэнергией жилье.

Отвечая на вопрос откуда в наш дом приходит электричество?, можно подвести такие итоги:

  • по классической схеме электроэнергия поступает от электростанции по линии электропередач различной мощности через электрические подстанции к распределительным щитам, которые расположены либо около частного дома, либо на этаже в подъезде.
  • по новой, более упрощенной, схеме электроэнергию может вырабатывать персональный небольшой источник – солнечная батарея или бытовой ветрогенератор, который подает её напрямую в квартиру или собственный дом.

Как всем хорошо известно – электроэнергия от места её производства доставляется к удалённому потребителю по высоковольтным линиям электропередач, рассчитанным на напряжения 110 кВ, 220 кВ или 330 кВ. После того, как электроэнергия по высоковольтным проводам доставляется в ваш район - она должна быть преобразована в знакомое для нас напряжение 220 вольт. Поэтому, прежде всего, оно преобразуется в более низкие напряжения 6, 10 или 35 кВ, а уж затем на местных трансформаторных подстанциях (ТП) превращается в трехфазное напряжение 380/220 В.

Трансформаторные подстанции могут иметь различные мощности и виды исполнения. Мощные городские трансформаторные подстанции устраиваются, как правило, в отдельных строениях, в которых размещаются специальные понижающие масляные трансформаторы и всё необходимое для надёжной работы подстанции коммутационное и защитное оборудование.

Высоковольтное напряжение, поступающее на городские трансформаторные подстанции, может подаваться на них по подземным кабельным каналам. По таким же подземным кабельным каналам непосредственно к вашему дому доставляется и пониженное трёхфазное напряжение 380/220 В. И только на вводном щитке всего здания это трёхфазное напряжение расключается на отдельные фазные линии с учётом равномерного распределения нагрузок по каждой из фаз.

Для небольших сельских и загородных трансформаторных подстанций отдельное строение, как правило, не предусматривается. Сельские подстанции представляют собой закрытую по периметру площадку с установленным прямо под открытым небом оборудованием, состоящим обычно всего из одного трансформатора.

При этом высокое напряжение к таким ТП подводится по воздушной линии (ВЛ), а пониженное напряжение распределяется по линейным потребителям - садовым домикам или сельским домам - по другой воздушной линии, закрепленной на столбах (опорах).

Как городская, так и сельская ТП позволяют получить рабочее трехфазное напряжение, поступающее ваш дом по трем фазным проводам, обозначаемым обыкновенно как фазы «А», «В» и «С». Правда на ТП к этим трём фазным проводам добавляется еще один провод N, который принято называть нейтральным. Этот провод появляется в результате организации местного защитного заземления оборудования подстанции, которое монтируется в непосредственной близости от неё. При этом напряжение между парами фазных проводов А-В, В-С и А-С составляет величину, равную 380 В и называется линейным напряжением.

Напряжение же между каждым из фазных проводов и нейтральным проводником называется фазным и составляет величину 220 В. Это и есть то самое напряжение, от которого работают все наши бытовые приборы, а также зажигаются квартирные осветительные приборы.
Подобная схема бытового электроснабжения жилых зданий и строений получила название "трехфазной четырехпроводной" и используется она чаще всего в системах бытового энергоснабжения. Основная задача последующей разводки системы состоит в том, чтобы на каждую из трёх фазных линий A-N, B-N и C-N приходилась (по возможности) одинаковая нагрузка.

При проведении подключения к трёхфазной четырёхпроводной сети отдельных садовых участков, например, стараются распределить потребителей по фазам так, чтобы к каждой фазной линии подключалось примерно одинаковое количество домиков и осветительных приборов, установленных на территории садового кооператива.

Помимо распределения энергии по потребителям, подстанции всех типов способны также решать еще одну очень важную задачу. Они оснащены специальным переключателем обмоток масляного трансформатора, который позволят регулировать выходное напряжение и устанавливать рабочее значение напряжения 380 В на выходе ТП с заданной точностью. Поступающее к потребителю рабочее фазное напряжение 220 В при этом также будет задаваться с определённой точностью, т.е. находиться в пределах допустимых отклонений. А величина отклонения питающего напряжения от его номинального значения и его изменения в течение суток, как известно, в значительной степени определяют надёжность работы электрооборудования и его долговечность

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

работы - раскрыть роль электричества в быту.

Задачи:

    Узнать, как электричество вырабатывается и поступает в дом;

    Закрепить правила безопасного обращения с электроприборами

Актуальность темы : без электричества невозможна современная жизнь.

Методы исследования:

Самостоятельная сборка простейшей электрической цепи.

Экскурсии в Музей занимательных наук Эйнштейна, в Народный музей энергетики им. Л.Н. Мишина (г. Ногинск)

Виртуальная экскурсия по Музею ПАО "МОЭСК",(г. Москва)

Интервью ветерана Восточных электрических сетей.

    Введение

Уважаемые Учителя, исследователи, друзья!

В современном мире без электричества нам никак нельзя.

И на конференции в конце зимы

Вашему вниманию представляем мы

Проект «Откуда в дом приходит электричество?»

Долго в комнате без света не прожить,

Без электрочайника чаю не попить,

Без машинки без стиральной пропадем,

В школу в мятой форме мы придем.

Ведь утюг, компьютер и дверной звонок

Да и школьный, что зовет всех на урок,

Без электричества работать бы не смог.

Пульт от телевизора, как и наш фонарь,

Работать не смогли,если б появились в старь.

Что ж в электрическом токе такого?

С одной стороны- помощнике, опасного другого?

Как появляется электричество? Где?

И как приходит в дом к каждой семье?-

Вот вопросы, что рассматриваем мы,

И надеемся, что станем с электричеством дружны!

Гипотеза : электричество приходит в дом разными способами.

Глава 1

Недавно к нам на урок пришел Муравьишка- Вопросик.

Это очень любознательный герой учебника по окружающему миру, составленному Андреем Анатольевичем Плешаковым.

Он задал вопрос Мудрой Черепахе: «Откуда к нам в дом приходит электричество?

На этот вопрос многие наши одноклассники ответили, что, конечно же, по проводам. Это мы узнали еще из специальных обучающих мультфильмов тетушки Совы,

Смешариков

И Фиксиков

Электрический ток чем - то похож на реку, только в реке течет вода, а по проводам текут маленькие премаленькие частицы - электроны. Электрический ток вырабатывают большие мощные электростанции. Чтобы получить электричество на таких станциях используется сила воды, солнца и ветра энергия. Электрический ток сначала течет по толстым высоковольтным проводам, потом по обычным проводам перетекает в наши квартиры, попадая в выключатели и розетки.

Нами было изучено развитие энергетики города Ногинска.

Для этого мы посетили Ветерана труда, Почетного энергетика Ногинских электрических сетей Косарева Юрия Арсеньевича.

Он нам рассказал, что первая электроподстанция Истомкино была построена в 1920 году, т.е. почти 100 лет назад.

В 1955 году в поселке «Красный электрик» была построена первая в Европе электроподстанция мощностью 500кВ.

Эти подстанции распределяют электричество, которое бежит по проводам

с Шатурской и Куйбышевской гидроэлектростанции

к трансформаторным подстанциям, которые находятся почти в каждом дворе.

Многие годы в ногинском офисе МОЭСК действует Народный музей энергетики имени Льва Николаевича Мишина, долгие годы возглавлявшего Ногинские электрические сети.

Музей известен далеко за пределами города.В декабре 2016 года его посетил губернатор Московской области Андрей Юрьевич Воробьев.

« А откуда поступает электричество в нашу школу?»- такой вопрос мы задали Письменной Татьяне Андреевне, долгое время возглавлявшей музей.

Она нам рассказала, как электричество вырабатывается Электрогорской электростанцией ГРЭС-3 имени инженера Р. Э. Классона

и бежит по толстым кабелям на электрическую подстанцию "Захарово».

Затем бежит на трансформаторную станцию в Кадетском переулке.

А оттуда уже к школе и жилым домам и школе.

Глава 3.

Нас окружает огромное количество предметов, облегчающих жизнь, работающих от батареек. Значит, в батарейках есть ток?

На этот вопрос нам ответил аниматор-экскурсовод Музея занимательных наук Эйнштейна.

Многих учёных с древних времен удивляла способность морского ската наносить удар в виде электрического разряда, но никто не мог объяснить, как удаётся этому существу накопить ток для разряда такой силы и откуда берётся ток в этой рыбе.

Итальянский химик и физик Вольта Алессандро обратил внимание на повторяющуюся комбинацию пластинок на спине ската и решил создать точный макет этой конструкции. Это был прообраз современной батарейки.

Состав современных батареек более сложный, но работают они по тому же принципу. Если к батарейке присоединить лампочку с помощью проводков, то отрицательные частички побегут к положительно заряженным частичкам стержня и зажгут лампочку.

На уроке мы повторили этот опыт. Лампочка, действительно, зажглась.

Следующее задание героев учебника нас сильно озадачило. Муравьишка предлагал нам собрать электрическую цепь из элементов электроконструктора. Как быть, если такого конструктора нет?

На помощь нам пришел старший товарищ, ученик 8 в класса Юшкин Павел. Дома он собрал электрическую цепь, а затем объяснил ее устройство и назначение.

Мы предлагаем вашему вниманию данный опыт.(Демонстрация)

Таким об-ра-зом, наша элек-три-че-ская цепь имеет сле-ду-ю-щие ос-нов-ные со-став-ные эле-мен-ты:

ис-точ-ник тока(батарейка)

по-тре-би-те-ли тока(светодиод)

ключ (вы-клю-ча-тель)

со-еди-ни-тель-ные про-во-да

Изоб-ра-зим схему со-бран-ной нами элек-три-че-ской цепи с ис-поль-зо-ва-ни-ем услов-ных обо-зна-че-ний:

Заключение

На основании исследования энергетики города и опыта по сборке электрической цепи мы делаем вывод, что электричество поступает к нам в дом двумя путями: по проводам и содержится в элементах питания, например, в батарейках.

И в заключении позвольте сказать,

Что об электробезопасности нельзя забывать.

Правила ТБ при знакомстве с электричеством соблюдали:

Баранов Илья,

Романов Иван и

Темненкова Дарья.

Источники

1.А.А Плешаков. Окружающий мир.1 класс(2014г)

2.И. Леенсон. Загадочные заряды и магниты Занимательное электричество(2006г)

3.Виртуальный музей энергетики МОЭСК

4. Народный музей энергетики имени Льва Мишина(Ногинск)

5. Музей занимательных наук Эйнштейна(Ногинск)

Электроэнергия является неотъемлемой частью нашей жизни. Каждый день мы, не задумываясь, используем множество бытовых электроприборов, не говоря уже о производстве. А откуда берется так необходимая нам электроэнергия? Ответ на этот вопрос знают даже дети: ее производят электростанции. А вот как она поступает от электростанции к нам, потребителям, знают не все. На этот вопрос мы постараемся ответить в нашей статье.

Итак, начнем с электростанций. Все знают основные виды электростанций: АЭС, ГЭС, ТЭС. Многие наверняка слышали о существовании дизельных генераторных установок и миниэлектростанций, которые все чаще используются на строительных площадках, в качестве защиты от обесточивания в больницах, а также могут обеспечить электроэнергией частный дом и т.д. В Европе для получения электроэнергии используют также энергию ветра и солнечную энергию. Ученые всего мира также работают над альтернативными видами электроэнергии, такими как реакция синтеза, электростанции на биомассе.

В нашей стране на сегодняшний день основными источниками электроэнергии являются АЭС, ГЭС и ТЭС. Более половины электроэнергии производят тепловые электростанции. Чаще всего такие электростанции располагаются в местах добычи топлива. В городах могут также использоваться теплоэлектроцентрали, которые обеспечивают город не только электроэнергией, но и горячей водой и теплом. Наиболее дешевую электроэнергию производят гидроэлектростанции.

Атомные электростанции - наиболее современные. Одним из важнейших преимуществ является тот факт, что они не привязаны к источнику сырья, а, следовательно, могут быть размещены практически в любом месте. АЭС также не загрязняют окружающую среду, при условии учета всех природных факторов и выполнения требований к их постройке.

Но вот у нас есть электростанция, которая производит электроэнергию. Что же происходит дальше? А дальше электроэнергия с электросъёмных шин и подаётся в электрическую часть электростанции, которая бывает открытого, закрытого и комбинированного типа. В электрочасти находится диспетчерский пункт управления электростанцией, автоматизированная система управления технологическим процессом (АСУ ТП), коммутационные аппараты, релейная защита, контрольно - измерительные приборы и сигнализации, высоковольтные повышающие и понижающие трансформаторы, высоковольтные выключатели, сборные шины и автотрансформаторы. После преобразования энергии электричество подаётся на высоковольтную линию электропередач (ВЛЭП). Линии электропередач, предназначенные для транспортировки электроэнергии на большие расстояния, должны иметь большую пропускную способность и малые потери, и состоят из проводов, опор, крепёжной арматуры, грозозащитных тросов, а также вспомогательных устройств. По своему назначению ЛЭП подразделяются на сверхдальние, магистральные и распределительные. Основными элементами воздушных линий электропередач являются металлические опоры, которые устанавливаются на определенном расстоянии друг от друга. Они бывают анкерными, промежуточными и угловыми. Анкерные опоры устанавливают в начале и конце линии электропередач, а также в местах перехода инженерных сооружений или естественных преград. Промежуточные опоры устанавливаются на прямых участках и предназначены для поддержки проводов с допустимым провисанием 6-8 метров в населённой местности, и 5-7 метров - в не населённой. Угловые опоры устанавливаются на углах поворота линии электропередач. Специальные транспозиционные опоры устанавливаются для изменения порядка расположения на опорах, а так же для ответвления проводов от магистральной линии ВЛЭП. Для передачи электроэнергии в высоковольтных линиях электропередач применяются неизолированные провода, изготовленные из алюминия и сталеалюминия следующих марок: АН, АЖ, АКП (алюминиевые) и ВЛ, АС, АСКС, АСКП, АСК (сталеалюминевые). Провода к опорам крепятся при помощи поддерживающих или натяжных изоляторов, которые монтируются на опору подвесным способом, и крепёжной арматуры. В свою очередь изоляторы бывают фарфоровые, с покрытием из глазури, стеклянные, из закалённого стекла, и полимерные, из специальных пластических масс. Для защиты линии электропередач от молнии на опорах натягиваются грозозащитные тросы, устанавливаются разрядники, а опоры заземляются. Так как линия обычно тянется на большое расстояние, то во избежание потерь напряжения используются промежуточные подстанции с повышающими трансформаторами.

Для дальнейшего распределения электроэнергии к магистральным ВЛЭП подключаются распределительные подстанции, которые в свою очередь раздают электроэнергию на понижающие подстанции. При распределении электроэнергии от подстанции к КТП может использоваться 2 типа прокладки кабелей: воздушный и под землей. При воздушной прокладке обычно используют алюминиевые или сталемедные неизолированные провода, которые подвешиваются на опорах. При подземной прокладке используется силовой кабель с медными или алюминиевыми токопроводящими жилами и броней, которая обеспечивает надежную защиту от механических воздействий. К кабелям такого типа относятся марки, предназначенные для эксплуатации на напряжение до 35 кВ, например или (6-10 кВ), или (10-35 кВ). Если трансформаторная подстанция находится на большом расстоянии, то использование силового кабеля будет экономически не выгодным, в таком случае используется воздушная прокладка.

От понижающей подстанции по линиям электропередач энергия распределяется между КТП, которые разделяются на мачтовые и киосковые (проходные и тупиковые). Комплектные трансформаторные подстанции осуществляют понижение напряжения с 10(6) до 0,4 кВ переменного тока частотой 50 Гц и предназначены для подачи электроэнергии в частные дома, отдельные населенные пункты или небольшие промышленные объекты. В мачтовых трансформаторных подстанциях ввод и вывод кабеля осуществляется при помощи воздушных линий. КТП киоскового типа служат для тех же целей, но устанавливаются в простейшую бетонную площадку и имеют серьезное преимущество - они позволяют осуществлять ввод и отвод, как воздушным путем, так и под землей.

Для отвода воздушных линий используется самонесущие алюминиевые изолированные провода СИП, которые подвешиваются на деревянных или бетонных опорах при помощи монтажной арматуры. Такой способ прокладки распределительной линии используется в частных секторах, гаражных кооперативах или там где необходимо запитать большое количество потребителей находящихся на некотором расстоянии друг от друга. Для прокладки подземных линий используется силовой кабель с алюминиевыми или медными жилами, с изоляцией из различных материалов, экранированный, бронированный, с защитным покровом или без него. В зависимости от способа прокладки могут использоваться различные марки кабеля. Для прокладки в специальных двустенных гофрированных трубах могут использоваться силовые кабели без защитного покрова и брони, такие, как АВВГ или . Для прокладки в траншеях используются кабели с броней и защитными покровами, которые имеют хорошую защиту от физического и механического воздействия. Это такие кабели как и (с броней и защитным покровом) или и (с броней без защитного покрова). Кроме того, в зависимости от характера блуждающих токов, могут использоваться силовые кабели с различными видами экранов, которые предназначены для прокладки, как в траншеях, так и в защищенных трубах. К таким кабелям относятся марки или .

От трансформаторной подстанции электроэнергия по выбранным проводам передается на распределительные пункты, которые находятся в специально отведенных для этого комнатах (щитовых). В щитовых устанавливаются распределительные устройства, которые не только обеспечивают передачу электроэнергии в квартиры, но также осуществляют запитку этажного и аварийного освещения, лифтов, систем вентиляции, кондиционирования и систем безопасности. Распределение от электрощитовой до этажных щитов, осуществляется при помощи кабелей, которые согласно условиям пожарной безопасности должны не распространять горение и иметь низкие показатели дымо и газовыделения. К таким маркам кабелей можно отнести (алюминиевые токопроводящие жилы), (медные жилы). Для прокладки магистральной линии используется и специальные крепежные скобы, которые обеспечивают сохранность кабеля на весь срок службы. Кроме того, для подвода питания от щитовой на этажные щиты может применяться шинопровод, который имеет ряд плюсов по сравнению с кабельной магистральной линией. К ним можно отнести удобство монтажа (секции без особых проблем собираются и монтируются в нишу), меньшие габариты по сравнению с кабельной линией (секции состоят из медных или алюминиевых шин, которые зачищены металлическим корпусом), удобство дальнейшей эксплуатации. И, наконец, от этажных щитов электроэнергия поступает на счетчик либо щит учетно-распределительный щит квартиры.