Отдых, охота и рыбалка в карелии. Перспективы применения фуллерена С60 в медицине


Молекула «футбольной» формы - фуллерен - кроме своего необычного химического строения обладает еще и биологической активностью. Французские биологи провели над мышами необычный эксперимент - добавляли им в еду фуллерен C 60 , растворенный в оливковом масле. Результат оказался невероятным: продолжительность жизни мышей возросла практически в два раза!

В 1985 году была открыта молекула, состоящая из 60 атомов углерода, устроенная наподобие футбольного мяча (рис. 1), - фуллерен , названный так в честь инженера Ричарда Фуллера , прославившегося конструкциями именно такой формы. Помимо своей удивительно симметричной формы, эта молекула, являющаяся третьей (после алмаза и графита) аллотропной формой углерода, оказалась чем-то вроде философского камня алхимиков . До последнего времени она не перестает удивлять ученых своей крайне низкой токсичностью , (особенно по сравнению с чем-то похоже устроенными нанотрубками ) и другими удивительными свойствами . Механизмы взаимодействия фуллеренов с клетками пока не ясны, но результат поистине можно назвать волшебством .

Рисунок 1. Фуллерен C 60 - молекула, состоящая из 60 атомов углерода (и ничего больше), расположенных так же, как вершины футбольного мяча.

Вот далеко не полный перечень тех свойств, которые заинтересовали медиков и биологов. Фуллерен и его производные можно использовать:

Помимо этого, фуллерен может использоваться для доставки в клетку различных лекарственных веществ и невирусной доставки в клеточное ядро генетических векторов , .

Казалось бы, куда еще расширять этот список, но недавно он пополнился еще одним, пожалуй, самым удивительным и непонятным, качеством фуллерена C 60 . При исследовании токсичности фуллерена C 60 , растворенного в оливковом масле, французские исследователи выяснили, что крысы, регулярно получающие раствор фуллерена C 60 , живут дольше, чем те, которым давали просто оливковое масло или обычную диету .

Растворение в масле резко повышает эффективность фуллерена C 60 , так как его большие агрегаты (16 и более молекул) не способны проникнуть внутрь клеток .

При этом продолжительность жизни увеличивалась не на какие-нибудь 20–30%, как в опытах с лучшими из «лекарств от старости» (такими как ресвератрол или рапамицин), а не менее чем в два раза ! Половина животных, получавших фуллерен, жили до 60 месяцев (самая старая крыса дожила до 5,5 лет). При этом в контрольной группе (с обычной диетой) продолжительность жизни 50% животных составляла 30 месяцев, а самые старые дожили лишь до 37 месяцев. Животные, получавшие оливковое масло без фуллерена, жили немного больше - 50% из них доживали до 40 месяцев, а самая старая крыса дожила до 58 месяцев (рис. 2).

Рисунок 2. Диаграмма выживаемости крыс , получавших: обычную диету (голубая линия ), вдобавок к диете оливковое масло (красная ) и оливковое масло с растворенным в нем фуллереном C 60 (черная линия ).

Животворное действие фуллерена C 60 авторы статьи приписывают его антиоксидантным свойствам. Однако не исключено, что оно может быть связано со способностью фуллерена C 60 взаимодействовать с витамином А . Известно, что ретиноиды (к которым относится и витамин А) играют важную роль в экспрессии ключевых генов иммунной системы, и что локальный синтез ретиноидов, по всей видимости, играет ключевую роль в регуляции эмбриогенеза и регенерации , .

К сожалению, эти опыты были поставлены на небольших группах животных и потому требуют тщательной проверки. Учитывая тот факт, что очищенный фуллерен C 60 , производимый в России, стоит всего около 1800 рублей за грамм, повторить эти опыты, уточнить дозировки и продолжительность «лечения» не так уж и сложно. Сложнее другое. Будет ли эта «терапия старости» так же эффективна для человека? Ведь люди - не крысы, и есть десятки примеров того, что препарат, очень эффективно действующий в экспериментах на мышах, оказывался совершенно бесполезным (если не вредным!), когда испытания переходили в клинику. Что ж - время покажет. Интересно было бы также сопоставить активность фуллерена C 60 по продлению жизни с его многочисленными водорастворимыми аналогами, синтезированными в России в самое последнее время.

Написано по материалам оригинальной статьи .

Литература

  1. Елецкий А.В. и Смирнов Б.М. (1993). Фуллерены. УФН . 163 , 33–60;
  2. Tomohisa Mori, Hiroya Takada, Shinobu Ito, Kenji Matsubayashi, Nobuhiko Miwa, Toshiko Sawaguchi. (2006). Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis . Toxicology . 225 , 48-54;
  3. Szwarc H. and Moussa F. (2011). Toxicity of 60fullerene: confusion in the scientific literature . J. Nanosci. Lett. 1 , 61–62;
  4. Невидимая граница: где сталкиваются «нано» и «био» ;
  5. Riccardo Marega, Davide Giust, Adrian Kremer, Davide Bonifazi. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications . Supramolecular Chemistry of Fullerenes and Carbon Nanotubes . 301-347;
  6. Пиотровский Л.Б. (2010). Наномедицина как часть нанотехнологий. «Вестник РАМН» . 3 , 41–46;
  7. Corey A. Theriot, Rachael C. Casey, Valerie C. Moore, Linsey Mitchell, Julia O. Reynolds, et. al.. (2010). Dendrofullerene DF-1 provides radioprotection to radiosensitive mammalian cells . Radiat Environ Biophys . 49 , 437-445;
  8. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructuresin vitro and in vivo . Free Radic. Biol. Med. 47 , 786–793;
  9. Tadahiko Mashino, Kumiko Shimotohno, Noriko Ikegami, Dai Nishikawa, Kensuke Okuda, et. al.. (2005). Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives . Bioorganic & Medicinal Chemistry Letters . 15 , 1107-1109;
  10. Zongshun Lu, Tianhong Dai, Liyi Huang, Divya B Kurup, George P Tegos, et. al.. (2010). Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections . Nanomedicine . 5 , 1525-1533;
  11. J. J. Ryan, H. R. Bateman, A. Stover, G. Gomez, S. K. Norton, et. al.. (2007). Fullerene Nanomaterials Inhibit the Allergic Response . The Journal of Immunology . 179 , 665-672;
  12. Yingying Xu, Jiadan Zhu, Kun Xiang, Yuankai Li, Ronghua Sun, et. al.. (2011). Synthesis and immunomodulatory activity of fullerene–tuftsin conjugates . Biomaterials . 32 , 9940-9949;
  13. Najla Gharbi, Monique Pressac, Michelle Hadchouel, Henri Szwarc, Stephen R. Wilson, Fathi Moussa. (2005). Fullerene is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity . Nano Lett. . 5 , 2578-2585;
  14. Zhiyun Chen, Lijing Ma, Ying Liu, Chunying Chen. (2012). Applications of Functionalized Fullerenes in Tumor Theranostics . Theranostics . 2 , 238-250;
  15. Fang Jiao, Ying Liu, Ying Qu, Wei Li, Guoqiang Zhou, et. al.. (2010). Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model . Carbon . 48 , 2231-2243;
  16. Huan Meng, Gengmei Xing, Baoyun Sun, Feng Zhao, Hao Lei, et. al.. (2010). Potent Angiogenesis Inhibition by the Particulate Form of Fullerene Derivatives . ACS Nano . 4 , 2773-2783;
  17. Artem A. Tykhomyrov, Victor S. Nedzvetsky, Vladimir K. Klochkov, Grigory V. Andrievsky. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals . Toxicology . 246 , 158-165;
  18. Григорьев В.В., Петрова Л.Н., Иванова Т.А., Бачурин С.О. и др. (2011). Исследование нейропротекторного действия гибридных структур на основе фуллерена С60. «Изв. РАН серия Биологическая» . 2 , 163–170;
  19. Zhiguo Zhou, Robert Lenk, Anthony Dellinger, Darren MacFarland, Krishan Kumar, et. al.. (2009). Fullerene nanomaterials potentiate hair growth . Nanomedicine: Nanotechnology, Biology and Medicine . 5 , 202-207;
  20. A. G. Bobylev, A. B. Kornev, L. G. Bobyleva, M. D. Shpagina, I. S. Fadeeva, et. al.. (2011). Fullerenolates: metallated polyhydroxylated fullerenes with potent anti-amyloid activity . Org. Biomol. Chem. . 9 , 5714;
  21. Наномедицина будущего: трансдермальная доставка с использованием наночастиц ;
  22. Alejandro Montellano, Tatiana Da Ros, Alberto Bianco, Maurizio Prato. (2011). Fullerene C60 as a multifunctional system for drug and gene delivery . Nanoscale . 3 , 4035;
  23. Кузнецова С.А. и Орецкая Т.С. (2010). Нанотранспортные системы адресной доставки нуклеиновых кислот в клетки . «Российские нанотехнологии» . 5 (9–10) , 40–52;
  24. Tarek Baati, Fanchon Bourasset, Najla Gharbi, Leila Njim, Manef Abderrabba, et. al.. (2012). The prolongation of the lifespan of rats by repeated oral administration of fullerene . Biomaterials . 33 , 4936-4946;
  25. Пиотровский Л.Б., Еропкин М.Ю., Еропкина Е.М., Думпис М.А., Киселев О.И. (2007). Механизмы биологического действия фуллеренов - зависимость от агрегатного состояния . «Психофармакология и биологическая наркология» . 7 (2) , 1548–1554;
  26. Fathi Moussa, Ste´phane Roux, Monique Pressac, Eric Ge´nin, Michelle Hadchouel, et. al.. (1998). In vivo reaction between fullerene and vitamin A in mouse liver . New J. Chem. . 22 , 989-992;
  27. Elwood Linney, Susan Donerly, Laura Mackey, Betsy Dobbs-McAuliffe. (2011). The negative side of retinoic acid receptors . Neurotoxicology and Teratology . 33 , 631-640;
  28. Lorraine J. Gudas. (2012). Emerging roles for retinoids in regeneration and differentiation in normal and disease states . Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids . 1821 , 213-221.

В 1985 году была открыта молекула, состоящая из 60 атомов углерода, устроенная наподобие футбольного мяча, – фуллерен, названный так в честь инженера Ричарда Фуллера, прославившегося конструкциями именно такой формы. Помимо своей удивительно симметричной формы, эта молекула, являющаяся третьей (после алмаза и графита) аллотропной формой углерода, оказалась чем-то вроде философского камня алхимиков .

До последнего времени она не перестает удивлять ученых своей крайне низкой токсичностью (особенно по сравнению с чем-то похоже устроенными нанотрубками ) и другими удивительными свойствами . Механизмы взаимодействия фуллеренов с клетками пока не ясны, но результат поистине можно назвать волшебством .

Вот далеко не полный перечень тех свойств, которые заинтересовали медиков и биологов. Фуллерен и его производные можно использовать:

  • для защиты организма от радиации и ультрафиолетового излучения ;
  • для защиты от вирусов и бактерий ;
  • для защиты от аллергии . Так, в экспериментах in vivo введение производных фуллерена ингибирует анафилаксию у мышей, и при этом токсического эффекта не наблюдается;
  • как вещество, стимулирующее иммунитет ;
  • как мощный антиоксидант , поскольку он является активным акцептором радикалов. Антиоксидантная активность фуллерена сопоставима с действием антиоксидантов класса SkQ («ионов Скулачева») и в 100–1000 раз превышает действие обычных антиоксидантов, таких как витамин Е, бутилгидрокситолуол, β-каротин;
  • как лекарственные препараты для борьбы с раковыми заболеваниями ;
  • для ингибирования ангиогенеза ;
  • для защиты мозга от алкоголя ;
  • для стимуляции роста нервов;
  • для стимуляции процессов регенерации кожи. Так, фуллерен является важным компонентом косметических омолаживающих средств GRS и CEFINE;
  • для стимуляции роста волос ;
  • как лекарство с антиамилоидным действием .

Помимо этого, фуллерен может использоваться для доставки в клетку различных лекарственных веществ и невирусной доставки в клеточное ядро генетических векторов .

Казалось бы, куда еще расширять этот список, но недавно он пополнился еще одним, пожалуй, самым удивительным и непонятным, качеством фуллерена С60. При исследовании токсичности фуллерена С60, растворенного в оливковом масле, французские исследователи выяснили, что крысы, регулярно получающие раствор фуллерена С60, живут дольше, чем те, которым давали просто оливковое масло или обычную диету . (Краткий пересказ можно прочитать в статье «Оливковое масло с фуллеренами – эликсир молодости?» – ВМ.)

Растворение в масле резко повышает эффективность фуллерена С60, так как его большие агрегаты (16 и более молекул) не способны проникнуть внутрь клеток .

При этом продолжительность жизни увеличивалась не на какие-нибудь 20-30%, как в опытах с лучшими из «лекарств от старости» (такими как ресвератрол или рапамицин), а не менее чем в два раза ! Половина животных, получавших фуллерен, жили до 60 месяцев (самая старая крыса дожила до 5,5 лет). При этом в контрольной группе (с обычной диетой) продолжительность жизни 50% животных составляла 30 месяцев, а самые старые дожили лишь до 37 месяцев. Животные, получавшие оливковое масло без фуллерена, жили немного больше – 50% из них доживали до 40 месяцев, а самая старая крыса дожила до 58 месяцев.

Диаграмма выживаемости крыс, получавших: обычную диету (голубая линия), вдобавок к диете оливковое масло (красная) и оливковое масло с растворенным в нем фуллереном С60 (черная линия). Рисунок из .

Животворное действие фуллерена С60 авторы статьи приписывают его антиоксидантным свойствам. Однако не исключено, что оно может быть связано со способностью фуллерена С60 взаимодействовать с витамином А . Известно, что ретиноиды (к которым относится и витамин А) играют важную роль в экспрессии ключевых генов иммунной системы, и что локальный синтез ретиноидов, по всей видимости, играет ключевую роль в регуляции эмбриогенеза и регенерации .

К сожалению, эти опыты были поставлены на небольших группах животных и потому требуют тщательной проверки. Учитывая тот факт, что очищенный фуллерен С60, производимый в России, стоит всего около 1800 рублей за грамм, повторить эти опыты, уточнить дозировки и продолжительность «лечения» не так уж и сложно. Сложнее другое. Будет ли эта «терапия старости» так же эффективна для человека? Ведь люди – не крысы, и есть десятки примеров того, что препарат, очень эффективно действующий в экспериментах на мышах, оказывался совершенно бесполезным (если не вредным!), когда испытания переходили в клинику. Что ж – время покажет. Интересно было бы также сопоставить активность фуллерена С60 по продлению жизни с его многочисленными водорастворимыми аналогами, синтезированными в России в самое последнее время.

Написано по материалам оригинальной статьи .

Литература

  1. А.В. Елецкий, Б.М. Смирнов. (1993). Фуллерены. УФН 163 (№ 2), 33–60;
  2. Mori T. et al. (2006). Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225, 48–54;
  3. Szwarc H, Moussa F. (2011). Toxicity of 60fullerene: confusion in the scientific literature. J. Nanosci. Lett. 1, 61–62;
  4. биомолекула: «Невидимая граница: где сталкиваются „нано“ и „био“»;
  5. Marega R., Giust D., Kremer A., Bonifazi D. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (eds N. Martin and J.-F. Nierengarten), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany;
  6. Пиотровский Л.Б. (2010). Наномедицина как часть нанотехнологий. Вестник РАМН 3, 41–46;
  7. Theriot C.A., Casey R.C., Moore V.C., Mitchell L., Reynolds J.O., Burgoyne M., et al. (2010). Dendrofullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat. Environ. Biophys. 49, 437–445;
  8. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med. 47, 786–793;
  9. Mashino T., Shimotohno K., Ikegami N., et al. (2005). Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 15, 1107–1109;
  10. Lu Z.S., Dai T.H., Huang L.Y., et al. (2010). Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5, 1525–1533;
  11. John J.R., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., et al. (2007). Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665–672;
  12. Xu Y.Y., Zhu J.D., Xiang K., Li Y.K., Sun R.H., Ma J., et al. (2011). Synthesis and immunomodulatory activity of 60fullerene-tuftsin conjugates. Biomaterials 32, 9940–9949;
  13. Gharbi N., Pressac M., Hadchouel M. et al. (2005). Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5, 2578–2585;
  14. Chen Z., Ma L., Liu Y., Chen C. (2012). Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics 2, 238–250;
  15. Jiao F., Liu Y., Qu Y. et al. (2010). Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48, 2231–2243;
  16. Meng H., Xing G.M., Sun B.Y., Zhao F., Lei H., Li W., et al. (2010). Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 4, 2773–2783;
  17. Tykhomyrov A.A., Nedzvetsky V.S., Klochkov V.K., Andrievsky G.V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246, 158–165;
  18. Григорьев В.В., Петрова Л.Н., Иванова Т.А., с соавт. и Бачурин С.О. (2011). Исследование нейропротекторного действия гибридных структур на основе фуллерена С60. Изв. РАН серия Биологическая 2, 163–170;
  19. Zhou Z.G., Lenk R., Dellinger A., MacFarland D., Kumar K., Wilson S.R., et al. (2009). Fullerene nanomaterials potentiate hair growth. Nanomed. Nanotechnol. Biol. Med. 5, 202–207;
  20. Bobylev A.G., Kornev A.B., Bobyleva L.G., Shpagina M.D., Fadeeva I.S., Fadeev R.S., et al. (2011). Fullerenolates: metallated polyhydroxylated fullerenes with potent antiamyloid activity. Org. Biomol. Chem. 9, 5714–5719;
  21. биомолекула: «Наномедицина будущего: трансдермальная доставка с использованием наночастиц»;
  22. Montellano A., Da Ros T., Bianco A., Prato M. (2011). Fullerene C(60) as a multifunctional system for drug and gene delivery. Nanoscale 3, 4035–4041;
  23. Кузнецова С.А., Орецкая Т.С. (2010). Нанотранспортные системы адресной доставки нуклеиновых кислот в клетки. Российские нанотехнологии 5 (№ 9–10), 40–52;
  24. Baati T., Bourasset F., Gharb N., et al. (2012) The prolongation of the lifespan of rats by repeated oral administration of 60fullerene. Biomaterials 33, 4936–4946;
  25. Пиотровский Л.Б., Еропкин М.Ю., Еропкина Е.М., Думпис М.А., Киселев О.И. (2007). Механизмы биологического действия фуллеренов – зависимость от агрегатного состояния. Психофармакология и биологическая наркология 7 (№ 2), 1548–1554;
  26. Moussa F., Roux S., Pressac M., Genin E., Hadchouel M., Trivin F., et al. (1998). In vivo reaction between 60fullerene and vitamin A in mouse liver. New J. Chem. 22, 989–992;
  27. Linney E., Donerly S., Mackey L., Dobbs-McAuliffe B. (2001). The negative side of retinoic acid receptors. Neurotoxicol Teratol. 33, 631–640;
  28. Gudas L.J. (2012). Emerging Roles for Retinoids in Regeneration and Differentiation in Normal and Disease States. Biochim Biophys Acta 1821, 213–221.

Портал «Вечная молодость»

Фуллерены - это молекулярные соединения, принадлежащие классу аллотропных модификаций углерода, имеющие замкнутые каркасные структуры, состоящие из трех координированных атомов углерода и имеющих 12 пятиугольных и (n/2 - 10) шестиугольных граней (n≥20). Особенностью является то, что каждый пятиугольник соседствует только с шестиугольниками .

Наиболее устойчивую форму имеет С 60 (бакминстерфуллерен), сферическая полая структура которого состоит из 20 гексагонов и 12 пентагонов.

Рисунок 1. Структура С 60

Молекула C 60 представляет собой атомы углерода, связанные друг с другом ковалентной связью. Данная связь обусловлена обобществлением валентных электронов атомов. Длина связи С−С в пентагоне равна 1,43 Ǻ, как и длина стороны гексагона, объединяющей обе фигуры, однако, сторона, соединяющая гексагоны, составляет приблизительно 1,39 Ǻ .

В определенных условиях молекулы С 60 имеют свойство упорядочиваться в пространстве, они располагаются в узлах кристаллической решетки, иными словами, фуллерен образует кристалл, называемый фуллеритом. Чтобы молекулы С 60 систематично разместились в пространстве, как и их атомы, они должны связаться между собой. Данная связь между молекулами в кристалле обусловлена наличием слабой ван-дер-ваальсовой силы. Это явление объясняется тем, что в электрически нейтральной молекуле отрицательный заряд электронов и положительный заряд ядра рассредоточены в пространстве, в следствии чего молекулы способны поляризовать друг друга, иными словами, они приводят к смещению в пространстве центров положительного и отрицательного зарядов, что обуславливает их взаимодействие .

Твердый C 60 при комнатной температуре имеет гранецентрированную кубическую решетку, плотность которой составляет 1,68 г/см 3 . При температуре ниже 0° С происходит трансформация в кубическую решетку.

Энтальпия образования фуллерена-60 составляет около 42,5 кДж/моль. Данный показатель отображает его малую стабильность, по сравнению с графитом (0 кДж/моль) и алмазом (1,67 кДж/моль). Стоит отметить, что с увеличением размеров сферы (по мере увеличения количества атомов углерода) энтальпия образования асимптотически стремится к энтальпии графита, это объясняется тем, что сфера все больше напоминает плоскость.

Внешне фуллерены представляют собой мелкокристаллические порошки черного цвета, не имеющие запаха. Они практически нерастворимы в воде (H 2 O), этаноле (C 2 H 5 OH), ацетоне (C 3 H 6 O) и других полярных растворителя, зато в бензоле (C 6 H 6), толуоле (C 6 H 5 −CH 3), фенилхлориде (C 6 H 5 Cl) растворяются образуя окрашенные в красно-фиолетовый цвет растворы. Стоит отметить, что при добавлении капли стирола (C 8 H 8) к насыщенному раствору C 60 в диоксане (C 4 H 8 O 2), происходит мгновенное изменение окраски раствора с желто-коричневого окраса на красно-фиолетовую, в связи с образованием комплекса (сольвата).

В насыщенных растворах ароматических растворителей фуллерены при низких температурах образует осадок - кристаллосольват вида C 60 ·Xn, где в качестве X выступают бензол (C 6 H 6), толуол (C 6 H 5 −CH 3), стирол (C 8 H 8), ферроцен (Fe(C 5 H 5) 2) и другие молекулы.

Энтальпия растворения фуллерена в большинстве растворителей положительна, при увеличении температуры растворимость, как правило, ухудшается .

Исследование физических и химических свойств фуллерена является актуальным явлением, так как данное соединение все прочнее входит в нашу жизнь. В настоящее время обсуждаются идеи использования фуллеренов в создании фотоприемников и оптоэлектронных устройств, катализаторов роста, алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются в синтезе металлов и сплавов с улучшенными свойствами.

Фуллерены планируются в использовании в основе производства аккумуляторных батарей. Принцип действия данных батарей основан на реакции гидрирования, они во многом аналогичны широко распространенным аккумуляторам на основе никеля, однако, в отличие от последних, обладают способностью запасать в несколько раз больше удельного количества водорода. Кроме того, подобные батареи обладают более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в отношении этих качеств литийными аккумуляторами. Фуллереновые аккумуляторы могут найти широкое применение для питания персональных компьютеров и слуховых аппаратов.

Значительное внимание уделяется проблеме использования фуллеренов в области медицины и фармакологии. Рассматривается идея создания противораковых медицинских препаратов, основой которых будут являться водорастворимые эндоэдральные соединения фуллеренов с радиоактивными изотопами.

Однако, применение фуллеренов ограничивается их высокой стоимостью, которая обусловлена трудоемкостью синтеза фуллереновой смеси, а также многостадийным выделением из нее отдельных компонентов.

Молекулярная форма углерода или аллотропная его модификация, фуллерен, - это длинный ряд атомных кластеров C n (n > 20), которые представляют собой выпуклые замкнутые многогранники, построенные из атомов углерода и имеющие пятиугольные или шестиугольные грани (здесь есть очень редкие исключения). Атомам углерода в незамещённых фуллеренах свойственно находиться в sp 2 -гибридном состоянии с координационным числом 3. Таким образом формируется сферическая сопряжённая ненасыщенная система согласно теории валентных связей.

Общее описание

Самая термодинамически устойчивая при нормальных условиях форма углерода - графит, который выглядит как стопка едва связанных друг с другом графеновых листов: плоские решётки, состоящие из шестиугольных ячеек, где на вершинах - атомы углерода. Каждый из них связан с тремя соседними атомами, а четвёртый валентный электрон образует пи-систему. Значит, фуллерен - это именно такая молекулярная форма, то есть картина sp 2 -гибридного состояния очевидна. Если ввести в графеновый лист геометрические дефекты, неизбежно образуется замкнутая структура. Например, такими дефектами служат пятичленные циклы (пятиугольные грани), точно так же распространённые наряду с шестиугольными в химии углерода.

Природа и технологии

Получение фуллеренов в чистом виде возможно путём искусственного синтеза. Эти соединения продолжают интенсивно изучать в разных странах, устанавливая условия, при которых происходит их образование, а также рассматривается структура фуллеренов и их свойства. Всё более ширится сфера их применения. Оказалось, что значительное количество фуллеренов содержится в саже, которая образуется на графитовых электродах в дуговом разряде. Ранее этого факта просто никто не видел.

Когда фуллерены были получены в условиях лаборатории, молекулы углерода начали обнаруживаться и в природе. В Карелии нашли их в образцах шунгитов, в Индии и США - в фурульгитах. Также много и часто встречаются молекулы углерода в метеоритах и отложениях на дне, которым не менее шестидесяти пяти миллионов лет. На Земле чистые фуллерены могут образовываться при разряде молнии и при сгорании природного газа. взятые над Средиземным морем, были изучены в 2011 году, и оказалось, что во всех взятых образцах - от Стамбула до Барселоны - присутствует фуллерен. Физические свойства этого вещества обуславливают самопроизвольное образование. Также огромные его количества обнаружены в космосе - и в газообразном состоянии, и в твёрдом виде.

Синтез

Первые опыты выделения фуллеренов происходили через конденсированные пары графита, которые получали при лазерном воздействии облучением твердых графитовых образцов. Удавалось получить только следы фуллеренов. Лишь в 1990 году химиками Хаффманом, Лэмбом и Кретчмером был разработан новый метод добычи фуллеренов в граммовых количествах. Он заключался в сжигании графитовых электродов электрической дугой в атмосфере гелия и при низком давлении. Происходила эрозия анода, и на стенках камеры появлялась сажа, содержащая фуллерены.

Далее сажу растворяли в толуоле или бензоле, а в полученном растворе выделялись граммы в чистом виде молекул С 70 и С 60 . Соотношение - 1:3. Кроме того, раствор содержал и два процента тяжёлых фуллеренов высшего порядка. Теперь дело было за малым: подбирать оптимальные параметры для испарения - состав атмосферы, давление, диаметр электродов, ток и так далее, чтобы достигнуть наибольшего выхода фуллеренов. Они составляли примерно до двенадцати процентов собственно материала анода. Именно поэтому и столь дорого фуллерены стоят.

Производство

Все попытки учёных экспериментаторов на первых порах были тщетными: производительные и дешёвые способы получения фуллеренов не находились. Ни сжигание в пламени углеводородов, ни химический синтез к успеху не привели. Метод электрической дуги оставался самым продуктивным, позволявшим получать около одного грамма фуллеренов в час. Фирма Mitsubishi наладила промышленное производство методом сжигания углеводородов, но их фуллерены не чисты - они содержат молекулы кислорода. И до сих пор остаётся неясным сам механизм образования данного вещества, потому что процессы горения дуги крайне неустойчивы с термодинамической точки зрения, и это очень сильно тормозит рассмотрение теории. Неопровержимы только факты о том, что фуллерен собирает отдельные атомы углерода, то есть фрагменты С 2 . Однако наглядная картина образования этого вещества так и не сформировалась.

Высокая стоимость фуллеренов определяется не только низким выходом при сжигании. Выделение, очистка, разделение фуллеренов разной массы из сажи - все эти процессы достаточно сложны. Особенно это касается разделения смеси на отдельные молекулярные фракции, которые проводятся посредством жидкостной хроматографии на колонках и с высоким давлением. На последнем этапе удаляются остатки растворителя из уже твёрдого фуллерена. Для этого образец выдерживается в условиях динамического вакуума при температуре до двухсот пятидесяти градусов. Но плюс в том, что во времена разработки фуллерена С 60 и получения его в уже макроколичествах органическая химия приросла самостоятельной ветвью - химией фуллеренов, которая стала невероятно популярной.

Польза

Производные фуллеренов применяются в различных областях техники. Плёнки и кристаллы фуллерена - полупроводники, обладающие при оптическом облучении фотопроводимостью. Кристаллы С 60 , если их легировать атомами щёлочных металлов, переходят в состояние сверхпроводимости. Растворы фуллерена имеют нелинейные оптические свойства, потому могут использоваться как основа оптических затворов, которые необходимы для защиты от интенсивного излучения. Также фуллерен используют в качестве катализатора для синтеза алмазов. Широко применяются фуллерены в биологии и медицине. Здесь работает три свойства данных молекул: определяющая мембранотропность липофильность, электронодефицит, дающий способность взаимодействия со свободными радикалами, а также способность передавать молекуле обычного кислорода их собственное возбуждённое состояние и превращать этот кислород в синглетный.

Подобные активные формы вещества атакуют биомолекулы: нуклеиновые кислоты, белки, липиды. Активные формы кислорода используют в фотодинамической терапии для лечения рака. В кровь пациента вводят фотосенсибилизаторы, генерирующие активные формы кислорода - собственно фуллерены или их производные. Кровоток в опухоли слабее, чем в здоровых тканях, а потому фотосенсибилизаторы накапливаются в ней, и после направленного облучения молекулы возбуждаются, генерируя активные формы кислорода. раковые клетки испытывают апоптоз, и опухоль разрушается. Плюс к этому - фуллерены имеют антиоксидантные свойства и улавливают активные формы кислорода.

Фуллерен понижает активность ВИЧ-интегразы, белка, который отвечает за встраивание вируса в ДНК, взаимодействуя с ним, изменяя конформацию и лишая его основной вредительской функции. Некоторые из производных фуллерена взаимодействуют непосредственно с ДНК и препятствуют действию рестиктаз.

Ещё о медицине

В 2007 году начали использоваться водорастворимые фуллерены для употребления их в качестве противоаллергических средств. Исследования проводились на человеческих клетках и крови, которые подвергались воздействию производных фуллерена - С60(NEt)x и С60(ОН)x. В экспериментах на живых организмах - мышах - результаты были положительными.

Уже сейчас это вещество используется как вектор доставки лекарства, поскольку вода с фуллеренами (вспомним гидрофобность С 60) проникает в мембрану клетки очень легко. Например, эритропоэтин - введённый непосредственно в кровь, в значительном количестве деградируется, а если использовать его вместе с фуллеренами, то концентрация возрастает более чем вдвое, и потому он попадает внутрь клетки.

ФУЛЛЕРЕНЫ – НОВАЯ АЛЛОТРОПНАЯ ФОРМА УГЛЕРОДА

1. ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ

1.1. Известные аллотропные формы углерода

До недавнего времени было известно, что углерод образует три аллотропных формы: – алмаз, графит и карбин. Аллотропия, от греч. Allos - иной, tropos - поворот, свойство, существование одного и того же элемента в виде различных по свойствам и строению структур В настоящее время известна четвертая аллотропная форма углерода, так называемый фуллерен (многоатомные молекулы углерода С n).

Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие в виде шестиугольников и пятиугольников.

В середине 60-х годов Дэвид Джонс конструировал замкнутые сфероидальные клетки из своеобразным образом свернутых графитовых слоев. Было показано, что в качестве дефекта, внедренного в гексагональную решетку обычного графита, и приводящего к образованию сложной искривленной поверхности, может быть пятиугольник.

В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, высокосимметричной молекулыС 60 , со структурой в виде усеченного икосаэдра, похожей на футбольный мяч. Чуть позже (1973 г.) российские ученые Д.А. Бочвар и Е.Г. Гальперин сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность.

В 1985 году, коллективу ученых: Г.Крото (Англия, Сассекский университет), Хит, 0"Брайен, Р.Ф.Керл и Р. Смолли (США, Университет Раиса) удалось обнаружить молекулу фуллерена при исследовании масс-спектров паров графита после лазерного облучения твердого образца.

Первый способ получения и выделения твердого кристаллического фуллерена был предложен в 1990 г. В.Кречмером и Д.Хафманом с коллегами в институте ядерной физики в г. Гейдельберге (Германия).

В 1991 году японский ученый Иджима на полярном ионном микроскопе впервые наблюдал различные структуры, составленные, как и в случае графита, из шестичленных колец углерода: нанотрубки, конусы, наночастицы.

В 1992 в природном углеродном минерале – шунгите (свое название этот минерал получил от названия поселка Шуньга в Карелии) были обнаружены природные фуллерены.

В 1997 году Р.Е.Смолли, Р.Ф.Керл,Г.Крото получили Нобелевскую премию по химии за изучение молекул С 60 , имеющих фору усеченного икосаэдра.

Рассмотрим структуру аллотропных форм углерода: алмаза, графита и карбина.


Алмаз - Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Соседние атомы связаны между собой ковалентными связями (sp 3 -гибридизация). Такая структура определяет свойства алмаза как самого твердого вещества, известного на Земле.

Графит находит широкое применение в самых разнообразных сферах человеческой деятельности, от изготовления карандашных грифелей до блоков замедления нейтронов в ядерных реакторах. Атомы углерода в кристаллической структуре графита связаны между собой прочными ковалентными связями (sp 2 - гибридизация) и формируют шестиугольные кольца, образующие, в свою очередь, прочную и стабильную сетку, похожую на пчелиные соты. Сетки располагаются друг над другом слоями. Расстояние между атомами, расположенными в вершинах правильных шестиугольников, равно 0,142 нм., между слоями 0,335 нм. Слои слабо связаны между собой. Такая структура - прочные слои углерода, слабо связанные между собой, определяет специфические свойства графита: низкую твёрдость и способность легко расслаиваться на мельчайшие чешуйки.

Карбин конденсируется в виде белого углеродного осадка на поверхности при облучении пирографита лазерным пучком света. Кристаллическая форма карбина состоит из параллельно ориентированных цепочек углеродных атомов с sp-гибридизацией валентных электронов в виде прямолинейных макромолекул полиинового (-С= С-С= С-...) или кумуленового (=С=С=С=...) типов.

Известны и другие формы углерода, такие как аморфный углерод, белый углерод (чаоит) и т.д. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза.

1.2.Геометрия молекулы фуллерена и кристаллическая решетка фуллерита

Рис.3 Молекула фуллерена С 6 0

В противоположность алмазу, графиту и карбину, фуллерен является новой формой углерода по существу. Молекула С 60 содержит фрагменты с пятикратной симметрией (пентагоны), которые запрещены природой для неорганических соединений. Поэтому следует признать, что молекула фуллерена является органической молекулой, а кристалл, образованный такими молекулами (фуллерит ) это молекулярный кристалл, являющийся связующим звеном между органическим и неорганическим веществом.

Из правильных шестиугольников легко выкладывается плоская поверхность, однако ими не может быть сформирована замкнутая поверхность. Для этого необходимо часть шестиугольных колец разрезать и из разрезанных частей сформировать пятиугольники. В фуллерене плоская сетка шестиугольников (графитовая сетка) свернута и сшита в замкнутую сферу. При этом часть шестиугольников преобразуется в пятиугольники. Образуется структура – усеченный икосаэдр, который имеет 10 осей симметрии третьего порядка, б осей симметрии пятого порядка. Каждая вершина этой фигуры имеет трех ближайших соседей. Каждый шестиугольник граничит с тремя шестиугольниками и тремя пятиугольниками, а каждый пятиугольник граничит только с шестиугольниками.Каждый атом углерода в молекуле C 60 находится в вершинах двух шестиугольников и одного пятиугольника и принципиально неотличим от других атомов углерода. Атомы углерода,образующие сферу, связаны между собой сильной ковалентной связью. Толщина сферической оболочки 0,1 нм, радиус молекулы С 60 0,357 нм. Длина связи С-С в пятиугольнике - 0,143 нм, в шестиугольнике – 0,139 нм.

Молекулы высших фуллеренов С 70 С 74 , С 76 , С 84 , С 164 , С 192 , С 216 , также имеют форму замкнутой поверхности.

Фуллерены с n< 60 оказались неустойчивыми, оказались неустойчивыми, хотя из чисто топологических соображений наименьшим возможным фуллереном является правильный додекаэдр С 20 .

Кристаллический фуллерен, который был назван фуллеритом имеет гранецентрированную кубическую решетку (ГЦК), пространственная группа (Fm3m).. Параметр кубической решетки а 0 = 1.42 нм, расстояние между ближайшими соседями – 1 нм. Число ближайших соседей в ГЦК решетке фуллерита –12.

Между молекулами С 60 в кристалле фуллерита существует слабая связь Ван-дер-Ваальса. Методом ядерного магнитного резонанса было доказано, что при комнатной температуре молекулы С 60 , вращаются вокруг положения равновесия с частотой 10 12 1/с. При понижении температуры вращение замедляется. При 249К в фуллерите наблюдается фазовый переход первого рода, при котором ГЦК решетка (пр. гр.Fm3m) переходит в простую кубическую (пр.гр. РаЗ). При этом объем фулдерита увеличивается на 1%. Кристалл фуллерита имеет плотность 1,7 г/см 3 , что значительно меньше плотности графита (2,3 г/см 3) и алмаза (3,5 г/см).

Молекула С 60 сохраняет стабильность в инертной атмосфере аргона вплоть до температур порядка 1700 К. В присутствии кислорода при 500 К наблюдается значительное окисление с образованием СО и CO 2 . При комнатной температуре окисление происходит при облучении фотонами с энергией 0,55 эВ. что значительно ниже энергии фотонов видимого света (1,54 эВ). Поэтому чистый фуллерит необходимо хранить в темноте. Процесс, продолжающийся несколько часов, приводит к разрушению ГЦК- решетки фуллерита и образованию неупорядоченной структуры, в которой на исходную молекулу Сбо приходится 12 атомов кислорода. При этом фуллерены полностью теряют свою форму.

1.3. Получение фуллеренов

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. Используется как электролитический нагрев графитового электрода, так и лазерное облучение поверхности графита На рис. 4 показана схема установки для получения фуллеренов, которую использовал В.Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение 10-20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием, давление 100 Тор. Скорость испарения графита в этой установке может достигать 10г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи., в нем содержится до 10% фуллеренов С 60 (90%) и С 70 (10%).Описанный дуговой метод получения фуллеренов получил название «фуллереновая дуга».

В описанном способе получения фуллеренов гелий играет роль буферного газа. Атомы гелия наиболее эффективно по сравнению с другими атомами «тушат» колебательные движения возбужденных углеродных фрагментов, препятствующих их объединению в стабильные структуры. Кроме того, атомы гелия уносят энергию, выделяющуюся при объединении углеродных фрагментов. Опыт показывает, что оптимальное давление гелия находится в диапазоне 100 Тор. При более высоких давлениях агрегация фрагментов углерода затруднена.

Рис.4. Схема установки для получения фуллеренов.

1 – графитовые электроды;

2 – охлаждаемая медная шина; 3 – медный кожух,

4 – пружины.

Изменение параметров процесса и конструкции установки ведет к изменению эффективности процесса и состава продукта. Качество продукта подтверждается как масс-спектрометрическими измерениями, так и другими методами (ядерный магнитный резонанс, электронный парамагнитный резонанс, ИК-спектроскопия и др.)

Обзор существующих в настоящее время способов получения фуллеренов и устройств установок, в которых получают для получения различные фуллеренов приведен в работе Г.Н.Чурилова.

Методы очистки и детектирования

Наиболее удобный и широко распространенный метод экстракциифуллеренов из продуктов термического разложения графита (термины: фуллерен-содержащей конденсат, фуллерено-содержащая сажа), а также последующей сепарации и очистки фуллеренов, основан на использовании растворителей и сорбентов.

Этот метод включает в себя несколько стадий. На первой стадии фуллерен-содержащая сажа обрабатывается с помощью неполярного растворителя, в качестве которого используются бензол, толуол и другие вещества. При этом фуллерены, обладающие значительной растворимостью в указанных растворителях, отделяются от нерастворимой фракции, содержание которой в фуллерен содержащей фазе составляет обычно 70-80 %. Типичное значение растворимости фуллеренов в растворах, используемых для их синтеза, составляет несколько десятых долей мольного процента. Выпаривание полученного таким образом раствора фуллеренов приводит к образованию черного поликристаллического порошка, представляющего собой смесь фуллеренов различного сорта. Типичный масс спектр подобного продукта показывает, что экстракт фуллеренов на 80 - 90 % состоит из С 60 и на 10 -15% из С 70 . Кроме того, имеется небольшое количество (на уровне долей процента) высших фуллеренов, выделение которых из экстракта представляет довольно сложную техническую задачу. Экстракт фуллеренов, растворенный в одном из растворителей, пропускается через сорбент, в качестве которого может быть использован алюминий, активированный уголь либо оксиды (Al 2 O 3 , SiO 2) с высокими сорбци- онными характеристиками. Фуллерены собираются этим металлом, а затем экстрагируются из него с помощью чистого растворителя. Эффективность экстракции определяется сочетанием сорбент-фуллерен-растворитель и обычно при использовании определенного сорбента и растворителя заметно зависит от типа фуллерена. Поэтому растворитель, пропущенный через сорбент с сорбированным в нем фуллереном, экстрагирует из сорбента поочередно фуллерены различного сорта, которые тем самым могут быть легко отделены друг от друга. Дальнейшее развитие описанной технологии получения сепарации и очистки фуллеренов, основанной на электродуговом синтезе фуллерено-содержащей сажи и её последующем разделении с помощью сорбентов и растворителей, привело к созданию установок, позволяющих синтезировать С 60 в количестве одного грамма в час.

1.4.Свойства фуллеренов

Кристаллические фуллерены и пленки представляют собой полупроводники с шириной запрещенной зоны 1,2-1,9 эВ и обладают фотопроводимостью. При облучении видимым светом электрическое сопротивление кристалла фуллерита уменьшается. Фотопроводимостью обладают не только чистый фуллерит, но и его различные смеси с другими веществами. Было обнаружено, что добавление атомов калия в пленки С 60 приводит к появлению сверхпроводимости при 19 К.

Молекулы фуллеренов, в которых атомы углерода связаны между собой как одинарными, так и двойными связями, являются трехмерными аналогами ароматических структур. Обладая высокой электроотрицательностью, они выступают в химических реакциях как сильные окислители. Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами. Так, недавно получены пленки полифуллерена, в которых молекулы С 60 связаны между собой не ван-дер-ваальсовским, как в кристалле фуллерита, а химическим взаимодействием. Эти плёнки, обладающие пластическими свойствами, являются новьм типом полимерного материала. Интересные результаты достигнуты в направлении синтеза полимеров на основе фуллеренов. При этом фуллерен С 60 служит основой полимерной цепи, а связь между молекулами осуществляется с помощью бензольных колец. Такая структура получила образное название "нить жемчуга".

Присоединение к С 60 радикалов, содержащих металлы платиновой группы, позволяет получить ферромагнитные материалы на основе фуллерена. В настоящее время известно, что более трети элементов периодической таблицы могут быть помещены внутрь молекулы. С 60 . Имеются сообщения о внедрении атомов лантана, никеля, натрия, калия, рубидия, цезия, атомов редкоземельных элементов, таких как тербий, гадолиний и диспрозий.

Разнообразие физико-химических и структурных свойств соединений на основе фуллеренов позволяет говорить о химии фуллеренов как о новом перспективном направлении органической химии.

1.5. Применение фуллеренов

В настоящее время в научной литературе обсуждаются вопросы использования фуллеренов для создания фотоприемников и оптоэлектронных устройств, катализаторов роста,алмазных и алмазоподобных пленок, сверхпроводящих материалов, а также в качестве красителей для копировальных машин. Фуллерены применяются для синтеза металлов и сплавов с новыми свойствами.

Фуллерены планируют использовать в качестве основы для производства аккумуляторных батарей. Эти батареи, принцип действия которых основан на реакции присоединения водорода, во многих отношениях аналогичны широко распространенным никелевым аккумуляторам, однако, обладают, в отличие от последних, способностью запасать примерно в пять раз больше удельное количество водорода. Кроме того, такие батареи характеризуются более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с наиболее продвинутыми в отношении этих качеств аккумуляторами на основе лития. Такие аккумуляторы могут найти широкое применение для питания персональных компьютеров и слуховых аппаратов.

Растворы фуллеренов в неполярных растворителях (сероуглерод, толуол, бензол, тетрахлорметан, декан, гексан, пентан) характеризуются нелинейными оптическими свойствами, что проявляется, в частности, в резком снижении прозрачности раствора при определенных условиях. Это открывает возможность использования фуллеренов в качестве основы оптических затворов- ограничителей интенсивности лазерного излучения..

Возникает перспектива использования фуллеренов в качестве основы для создания запоминающей среды со сверхвысокой плотностью информации. Фуллерены могут найти применение в качестве присадок для ракетных топлив, смазочного материала.

Большое внимание уделяется проблеме использования фуллеренов в медицине и фармакологии. Обсуждается идея создания противораковых медицинских препаратов на основе водо-растворимых эндоэдральных соединенийфуллеренов с радиоактивными изотопами. (Эндоэдральные соединения – это молекулы фуллеренов, внутри которых помещен один или более атомов какого- либо элемента). Найдены условия синтеза противовирусных и противораковых препаратов на основе фуллеренов. Одна из трудностей при решении этих проблем – создания водорастворимых нетоксичных соединений фуллеренов, которые могли бы вводиться в организм человека и доставляться кровью в орган, подлежащий терапевтическому воздействию.

Применение фуллеренов сдерживается их высокой стоимостью, которая складывается из трудоемкости получения фуллереновой смеси и из выделения из нее отдельных компонентов.

1.6.Углеродные нанотрубки

Структура нанотрубок

Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств.

Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, т.е. поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода..).

Параметр, указывающим координаты шестиугольника, который в результате сворачивания плоскости должен совпасть с шестиугольником, находящимся в начале координат, называется хиральностью нанотрубки и обозначается набором символов (т, п). Хиральностьнанотрубки определяет ее электрические характеристики.

Как показали наблюдения, выполненные с помощью электронных микроскопов, большинство нанотрубок состоят из нескольких графитовых слоев, либо вложенных один в другой, либо навитых на общую ось.

Однослойные нанотрубки



На рис. 4 представлена идеализированная модель однослойной нанотрубки. Такая трубка заканчивается полусферическими вершинами, содержащими наряду

с правильными шестиугольниками, также по шесть правильных пятиугольников. Наличие пятиугольников на концах трубок позволяет рассматривать их как предельный случай молекул фуллеренов, длина продольной оси которых значительно превышает их диаметр.

Структура однослойных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего, это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Многослойные нанотрубки

Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций как в продольном, так и в поперечном направлении. Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рис. 5. Структура типа "русской матрешки" (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга однослойных нанотрубок (рис 5 а). Другая разновидность этой структуры, показанная на рис. 5 б, представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур (рис. 5 в), напоминает свиток. Для всех приведённых структур расстояния между соседними графитовыми слоями близко к величине 0,34 нм, т.е. расстоянию между соседними плоскостями кристаллического графита. Реализация той или иной структуры в конкретной экспериментальной ситуации зависит от условий синтеза нанотрубок.



Следует иметь в виду, что идеализированная поперечная структура нанотрубок, в которой расстояние между соседними слоями близко к значению 0,34 нм и не зависит от аксиальной координаты, на практике искажается вследствие возмущающего воздействия соседних нанотрубок.

Наличие дефектов приводит также к искажению прямолинейной формы нанотрубки и придаёт ей форму гармошки.

Другой тип дефектов, нередко отмечаемых на графитовой поверхности многослойных нанотрубок, связан с внедрением в поверхность, состоящую преимущественно из правильных шестиугольников, некоторого количества пятиугольников или семиугольников. Это приводит к нарушению цилиндрической формы, причём внедрение пятиугольника вызывает выпуклый изгиб, в то время как внедрение семиугольника способствует появлению вогнутого изгиба. Таким образом, подобные дефекты вызывают появление изогнутых и спиралевидных нанотрубок.

Структура наночастиц

В процессе образования фуллеренов из графита образуются также наночастицы. Это замкнутые структуры, подобные фуллеренам, но значительно превышающие их по размеру. В отличие от фуллеренов, они также как и нанотрубки могут содержать несколько слоев., имеют структуру замкнутых, вложенных друг в друга графитовых оболочек.

В наночастицах, аналогично графиту, атомы внутри оболочки связаны химическими связями, а между атомами соседних оболочек действует слабое ван-дер-ваальсово взаимодействие. Обычно оболочки наночастиц имеют форму близкую к многограннику. В структуре каждой такой оболочки, кроме шестиугольников, как в структуре графита, есть 12 пятиугольников, наблюдаются дополнительные пары из пяти и семиугольников. Электронно-микроскопическое изучение формы и строения углеродных частиц в фуллерено-содержащем конденсате было недавно проведено в работах Jarkovа S.M., Кашкина В.Б.

Получение углеродных нанотрубок

Углеродных нанотрубок образуются при термическом распыление графитового электрода в плазме дугового разряда, горящей в атмосфере гелия. Этот метод, как и метод лазерного распыления, лежащий в основе эффективной технологии получения фуллеренов, позволяет получать нанотрубки в количестве, достаточном для детального исследования их физико-химических свойств.

Нанотрубка может быть получена из протяжённых фрагментов графита, которые далее скручиваются в трубку. Для образования протяжённых фрагментов необходимы специальные условия нагрева графита. Оптимальные условия получения нанотрубок реализуются в дуговом разряде при использовании электролизного графита в качестве электродов.

Среди различны продуктов термического распыления графита (фуллерены, наночастицы, частицы сажи) небольшая часть (несколько процентов) приходится и на многослойные нанотрубки, которые частично прикрепляются к холодным поверхностям установки, частично осаждаются на поверхности вместе с сажей.

Однослойные нанотрубки образуются при добавлении в анод небольшой примеси Fe, Co, Ni, Cd (т. е. добавлением катализаторов). Кроме того, однослойные нанотрубки получаются при окислении многослойных нанотрубок. С целью окисления многослойные нанотрубоки обрабатываются кислородом при умеренном нагреве, либо кипящей азотной кислотой, причём в последнем случае происходит удаление пятичленных графитовых колец, приводящее к открытию концов трубок Окисление позволяет снять верхние слои с многослойной трубки и открыть её концы. Так как реакционная способность наночастиц выше, чем у нанотрубок, то при значительном разрушении углеродного продукта в результате окисления доля нанотрубок в оставшейся её части увеличивается.

При электродуговом способе получения фуллеренов часть материала, разрушающегося под действием дуги графитового анода, осаждается на катоде. К окончанию процесса разрушения графитового стержня данное образование вырастает настолько, что охватывает собой всю область дуги. Этот нарост имеет форму чаши, в объем которого введен анод. Физические характеристики катодного нароста сильно отличаются от характеристик графита, их которого состоит анод. Микротвердость нароста 5.95 ГПа (графита –0.22 ГПа), плотность нароста 1.32 г/см 3 (графит -2.3 г/см 3), удельное электрическое сопротивление нароста составляет 1.4*10 -4 Ом м, что практически на порядок больше, чем у графита (1.5*10 -5 Ом м). При 35 К обнаружена аномально высокая магнитная восприимчивость нароста на катоде, что позволило предположить, что нарост состоит, в основном, из нанотрубок (Белов Н.Н.).

Свойства нанотрубок

Широкие перспективы использования нанотрубок в материаловедении открываются при капсулипровании внутрь углеродных нанотрубок сверхпроводящих кристаллов (например, ТаС). В литературе описана следующая технология. Использовался дуговой разряд постоянного тока ~30 А при напряжении 30 В в атмосфере гелия с электродами, представляющими собой спрессованную смесь таллиевой пудры с графитовым пигментом. Межэлектродное расстояние составляло 2-3 мм. С помощью туннельного электронного микроскопа в продуктах термического разложения материала электродов было обнаружено значительное количество кристаллов ТаС, капсулированных в нанотрубки . х арактерный поперечный размер кристаллитов составлял около 7 нм, типичная длина нанотрубок – более 200 нм. Нанотрубки представляли собой многослойные цилиндры с расстоянием между слоями 0,3481 ±0,0009 нм, близким к соответствующему параметру для графита. Измерение температурной зависимости магнитной восприимчивости образцов показали, что капсулированные нанокристаллы, переходят в сверхпроводящее состояние при Т=10 К.

Возможность получения сверхпроводящих кристаллов, капсулированных в нанотрубки, позволяет изолировать их от вредного воздействия внешней среды,например, от окисления, открывая тем самым путь к более эффективному развитию соответствующих нанотехнологий..

Большая отрицательная магнитная восприимчивость нанотрубок указывает на их диамагнитные свойства. Предполагают, что диамагнетизм нанотрубок обусловлен протеканием электронных токов по их окружности. Величина магнитной восприимчивости не зависит от ориентации образца, что связано с его неупорядоченной структурой. Относительно большое значение магнитной восприимчивости указывает на то, что, по крайней мере, в одном из направлений эта величина сравнима с соответствующим значением для графита. Отличие температурной зависимости магнитной восприимчивости нанотрубок от соответствующих данных для других форм углерода указывает на то, что углеродные нанотрубки являются отдельной самостоятельной формой углерода, свойства которой принципиально отличаются от свойств углерода в других состояниях .

Применение нанотрубок

В основе многих технологических применений нанотрубок лежит такое их свойство, как высокая удельная поверхность (в случае однослойной нанотрубки около 600 кв. м. на 1/г), что открывает возможность их использования в качестве пористого материала в фильтрах и т.д.

Материал нанотрубок с успехом может использоваться в качестве несущей подложки для осуществления гетерогенного катализа, причем каталитическая активностьоткрытых нанотрубок заметно превышает соответствующий параметр длязамкнутыхнанотрубок.

Возможно использование нанотрубок с высокой удельной поверхность в качестве электродов для электролитических конденсаторов с большой удельной мощностью.

Углеродные нанотрубки хорошо себя зарекомендовали в экспериментах по использованию их в качестве покрытия, способствующего образованию алмазной пленки. Как показывают фотографии, выполненные с помощью электронного микроскопа, алмазная пленка, напыленная на пленку нанотрубок, отличается в лучшую сторону в отношении плотности и однородности зародышей от пленки, напыленной на С 60 и С 70 .

Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники. Расчетным путем доказано, что введение в идеальную структуру нанотрубки в качестве дефекта пары пятиугольник–семиугольник изменяет ее электронные свойства. Нанотрубка с внедренным в нее дефектом может рассматриваться как гетеропереход металл-полупроводник, который, в принципе, может составить основу полупроводникового элемента рекордно малых размеров.

Нанотрубки могут служить основой тончайшего измерительного инструмента, используемого для контроля неоднородностей поверхности электронных схем.

Интересные применения могут получить нанострубки при заполнении их различными материалами. При этом нанотрубка может использоваться как в качестве носителя заполняющего ее материала, так и в качестве изолирующей оболочки, предохраняющей данный материал от электрического контакта, либо от химического взаимодействия с окружающими объектами.

ЗАКЛЮЧЕНИЕ

Хотя фуллерены имеют короткую историю, это направление науки быстро развивается, привлекая к себе все новых исследователей. Эта область науки включает три направления: физика фуллеренов, химия фуллеренов и технология фуллеренов.

Физика фуллеренов занимается исследованием структурных, механических, электрических, магнитных, оптических свойств фуллеренов и их соединений в различных фазовых состояниях. Сюда относится также изучение характера взаимодействия между атомами углерода в этих соединениях, спектроскопия молекул фуллеренов, свойства и структура систем, состоящих из молекул фуллеренов. Физика фуллеренов является наиболее продвинутой ветвью в области фуллеренов.

Химия фуллеренов связана с созданием и изучением новых химических соединений, основу которых составляют замкнутые молекулы углерода, а также изучает химические процессы, в которых они участвуют. Следует отметить, что по концепциям и методам исследования это направление химии во многом принципиально отличается от традиционной химии.

Технология фуллеренов включает в себя как методы производства фуллеренов, так и различные их приложения.

СПИСОК ЛИТЕРАТУРЫ

1. Соколов В. И., Станкевич И. В. Фуллерены-новые аллотропные формы углерода: структура, электронное строение и химические свойства//Успехи химии, т.62 (5), с.455, 1993.

2. Новые направления в исследованиях фуллеренов//УФН, т. 164 (9), с. 1007, 1994.

3. Елецкий А. В., Смирнов Б.М. Фуллерены и структуры углерода//УФН, т. 165 (9), с.977, 1995.

4. Золотухин И.В. Фуллерит – новая форма углерода//СОЖ №2, с.51, 1996.

5. Мастеров В.Ф. Физические свойства фуллеренов//СОЖ №1, с.92, 1997.

6. Лозовик Ю.В., Попов А.М. Образование и рост углеродных наноструктур – фуллеренов, наночастиц, нанотрубок и конусов//УФН, т. 167 (7), с. 151, 1997/

7. Елецкий А.В. .Углеродные нанотрубки//УФН, т.167(9), с.945, 1997.

8. Смолли Р.Е. Открывая фуллерены//УФН, т.168 (3), с.323, 1998 .

9. Чурилов Г.Н. Обзор методов получения фуллеренов//Материалы 2 межрегиональной конференции с международным участием «Ультрадисперсные порошки, наноструктуры, материалы», Красноярск, КГТУ, 5-7 октября 1999 г,. с. 77-87.

10. Белов Н.Н. и др. Строение поверхности катодного нароста, образующегося при синтезе фуллеренов // Аэрозоли т.4f, N1, 1998 г. с.25-29

11. Jarkov S.M.,. Titarenko Ya .N., Churilov G.N. Elektron microscopy studies off FCC carbon particles// Carbon, v. 36, N 5-6, 1998, p. 595-597

12. Кашкин В.Б., Рублева Т.В., Кашкина Л.В., Мосин Р.А. Цифровая обработка электронно-микроскопических изображений углеродных частиц в фуллерено-содержащей саже // Материалы 2 межрегиональной конференции с международным участием «Ультрадисперсные порошки, наноструктуры, материалы», Красноярск, КГТУ, 5-7 октября 1999 г,. с. 91-92