Нужна ли транспозиция проводов вл 10 кв. Расположение проводов на опорах


Транспозиция (в электротехнике) Транспозиция в электротехнике, изменение взаимного расположения проводов отдельных фаз по длине воздушной линии электропередачи (ЛЭП) для уменьшения нежелательного влияния ЛЭП друг на друга и на близлежащие линии связи. При Т. вся ЛЭП условно разделяется на участки, число которых кратно числу фаз. При переходе с одного участка на другой фазы меняются местами так, что каждая из них попеременно занимает положение остальных. Длина участка определяется условиями надёжной работы ЛЭП, стоимостью её сооружения и требованиями симметрии её токов и напряжений, возрастающей в результате выравнивания значений индуктивности и ёмкости фаз ЛЭП при Т. Выполняют Т. на ЛЭП длиной свыше 100 км и напряжением от 110 кв и выше. Полный цикл Т. фаз осуществляется на длине не свыше 300 км .

Лит.: Мельников Н. А., Электрические сети и системы, М., 1975.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Транспозиция (в электротехнике)" в других словарях:

    - (транспонирование, транспонировка; от лат. trānspositiō «перекладывание») многозначный термин. Транспозиция в комбинаторике перестановка, которая меняет местами только два элемента. Транспозиция в генетике перемещение… … Википедия

    транспозиция (проводов) ЛЭП - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN transmission line transposition …

    транспозиция (фазных) проводов - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductor transposition … Справочник технического переводчика

    транспозиция в пролёте - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN span transpositionspan type transposition … Справочник технического переводчика

    транспозиция проводов ВЛ - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN open wire transposition … Справочник технического переводчика

    транспозиция фаз - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN phase transposition … Справочник технического переводчика

    I Транспозиция (от позднелат. transpositio перестановка) (транспонировка) в музыке, перенос всех звуков музыкального произведения на определённый интервал вверх или вниз. Т. на любой интервал, кроме октавы, меняет тональность. Цель Т.… … Большая советская энциклопедия

    обратная транспозиция витков (обмотки) - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN inverted turn transposition … Справочник технического переводчика

    скрещивание проводов - транспозиция — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы транспозиция EN cross connection … Справочник технического переводчика

Основными элементами ВЛ являются: опоры, провода, изоляторы, линейная арматура, грозозащитные тросы.

Для ВЛ используются металлические, железобетонные и деревянные опоры.

Для изготовления металлических опор применяют углеродистую и низколегированную стали. Для защиты от коррозии опоры оцинковывают или покрывают антикоррозийными лаками и красками. Такие опоры устанавливаются на ВЛ напряжением 35, 110, 220, 330 и 500 кВ (рис. 3.1).

Рис. 3.1. Двухцепная ВЛ-35 на металлических опорах

Железобетонные опоры из центрифугированного бетона кольцеобразного сечения применяют для линий напряжением 35, 110, 220 кВ. Железобетонные опоры из вибробетона прямоугольного или квадратного сечения применяют для линий напряжением 0,4, 6, 10 кВ (рис. 3.2).

Для деревянных опор используется лиственница зимней рубки, сосна, ель, пихта. Деревянные опоры с железобетонными приставками применяют для ВЛ 0,4, 6, 10, 35 и 110 кВ. Для защиты от гниения деревянные опоры пропитывают антисептиком, что увеличивает срок службы древесины в 3 раза.

Рис. 3.2. Сечения железобетонных опор:

а – центрифугированные; б – из вибробетона

По назначению опоры делятся на промежуточные (рис. 3.3) и анкерные (рис. 3.4). Промежуточные опоры устанавливают на прямых участках трассы и предназначены только для поддержания проводов на изоляторах. Они не воспринимают усилий вдоль воздушной линии. Анкерные опоры рассчитаны на одностороннее тяжение проводов в пролетах. Анкерные опоры устанавливают через каждые 3-5 км ВЛ. Если не устанавливать анкерные опоры, то в случае обрыва проводов в пролете все промежуточные опоры начнут падение друг за другом и вся ВЛ на несколько километров упадет. При наличии анкерной опоры падение опор на ней прекратится.

Рис. 3.3. Деревянные промежуточные опоры:

а – для линий 6, 10 кВ; б – для линий 35, 110 кВ; 1 – стойки; 2 – приставка (пасынок); 3 – бандаж; 4 – траверсы

Рис. 3.4. Анкерные опоры:

а – для ВЛ 35, 110 кВ; б – для ВЛ 6, 10 кВ

На анкерных опорах провода закрепляют жестко. Угловые опоры устанавливают в точках изменения направления ВЛ. При незначительных углах поворота (до 20°) эти опоры могут изготавливаться как промежуточные, при углах поворота от 20° до 90° их выполняют по типу анкерных опор. Концевые опоры устанавливают в конце линии перед подстанциями или вводами.

В линиях напряжением 6, 10, 35 кВ концевые и угловые опоры выполняются А-образными или АП-образными.

Воздушные линии могут быть одноцепные и двухцепные. Одноцепная ВЛ содержит на опоре одну цепь из трех проводов трехфазной сети, а двухцепная содержит две цепи.

Рис. 3.5. Транспозиция проводов ВЛ 110, 220 кВ:

1 , 2 – транспозиционные опоры

Транспозиционные анкерные опоры с дополнительными изоляторами осуществляют транспозицию проводов (рис. 3.5) на ВЛ напряжением 110, 220 кВ и выше. Транспозиция проводов необходима для выравнивания индуктивностей и емкостей и падения напряжения во всех фазах ВЛ при длине более 100 км таким образом, чтобы на одной трети длины каждая фаза занимала среднее положение.

Характеристики пролета ВЛ

Основные характеристики пролета: длина, габарит, стрела провеса (рис. 3.6).

Рис. 3.6. Характеристика пролета ВЛ:

а – при одинаковом уровне подвеса проводов; б – при разных уровнях;

– длина пролета; – габарит; – стрела провеса; – высота опоры

Длина пролета – расстояние между опорами; габарит – наименьшее расстояние от нижней точки провода до земли (воды, сооружения). Стрела провеса – расстояние от нижней точки провода до прямой, соединяющей точки подвеса. Зимой стрела провеса уменьшается, летом увеличивается.

Размеры ВЛ зависят от номинального напряжения (табл. 3.1).

Таблица 3.1

Размеры элементов конструкции ВЛ разных напряжений

Требования ПУЭ при сооружении ВЛ

Требования ПУЭ к ВЛ изложены на семидесяти шести страницах. Ниже приведены для примера только некоторые из них.

1. Наименьшие расстояния от проводов до земли (габарит) для ВЛ различных напряжений (табл. 3.2).

Таблица 3.2

*К населенной местности относятся города, поселки, дачные поселения, к ненаселенной – поля, пашни и т.п.

2. Нельзя строить ВЛ над стадионом, школой, детским садом, рынком.

3. Сечение проводов для ВЛ 6, 10 кВ марки АС необходимо принимать не менее 50 мм 2 .

4. В населенной местности для ВЛ 6, 10 кВ должна быть двойная привязка проводов к изоляторам.

Если при строительстве ВЛ будут допущены нарушения требований ПУЭ, то инспектор Ростехнадзора не даст разрешение на эксплуатацию данной ВЛ и потребует устранить нарушения.

Провода для воздушных линий электропередач

Для воздушных линий (ВЛ) электропередач используют голые многопроволочные алюминиевые (А) и сталеалюминевые (АС) провода. Например, провод А-50 содержит 7 алюминиевых проволок диаметром по 3 мм каждая. Площадь поперечного сечения одной проволоки мм 2 . суммарная площадь семи проволок мм 2 .

Расшифровка провода А-50: А – алюминиевый, 50 – площадь поперечного сечения провода, мм 2 . Провод А-50 выдерживает на разрыв силу кгс, масса 1 км составляет кг, сопротивление 1 км Ом. Провода марки А изготавливаются сечением от 16 до 800 мм 2 . Технические данные этих проводов представлены в табл. 3.3.

Таблица 3.3

Технические данные голых алюминиевых проводов марки А

Номинальное сечение, мм 2 Диаметр провода, мм Сопротивление 1 км при 20°С, Ом , Ом/км Число и диаметр проволок, мм Разрывное усилие, кгс Масса 1 км, кг
5,1 1,8 7х1,70
6,4 1,15 7х2,13
7,5 0,84 7х2,50
9,0 0,58 7х3,00
10,7 0,41 7х3,55
12,3 0,31 7х4,10
14,0 0,25 19х2,80
15,8 0,19 19х3,15
17,8 0,16 19х3,50
20,0 0,12 19х4,00
22,1 0,1 37х3,15

Провод АС-50/8 алюминиевый со стальным сердечником содержит 6 алюминиевых проволок диаметром по 3,2 мм и одну стальную проволоку диаметром 3,2 мм. Площадь поперечного сечения алюминиевой проволоки мм 2 . Суммарная площадь шести алюминиевых проволок мм 2 .

Площадь стальной проволоки мм 2 .

Расшифровка провода АС-50/8: А – алюминиевый, С – стальной, 50 – суммарная площадь поперечного сечения алюминиевых проволок, мм 2 , 8 – площадь сечения стального сердечника, мм 2 .

Провод АС-50/8 выдерживает на разрыв кгс, масса 1 км кг, сопротивление 1 км Ом. Провода марки АС изготавливаются сечением от 10 до 1000 мм 2 . Технические данные этих проводов представлены в табл. 3.4.

Таблица 3.4

Технические данные голых сталеалюминевых проводов марки АС

Номинальное сечение, (алюминий/ сталь), мм 2 Диаметр провода, мм Сопротивление 1 км при 20°С, Ом , Ом/км Количество и диаметр проволок, мм Разрывное усилие, кгс Масса 1 км, кг
алюминиевых стальных
10/1,8 4,5 6х1,50 1х1,50 42,7
16/2,7 5,6 1,78 6х1,85 1х1,85
25/4,2 6,9 1,15 6х2,30 1х2,30
35/6,2 8,4 0,78 6х2,80 1х2,80
50/8 9,6 0,6 6х3,20 1х3,20
70/11 11,4 0,42 6х3,80 1х3,80
70/72 15,4 0,42 18х2,20 19х2,20
95/16 13,5 0,3 6х4,5 1х4,5
95/141 19,8 0,32 24х2,20 37х2,20
120/19 15,2 0,24 26х2,40 7х1,85
120/27 15,4 0,25 30х2,20 7х2,20
150/19 16,8 0,21 24х2,80 7х1,85
150/24 17,1 0,20 26х2,70 7х2,10
150/34 17,5 0,21 30х2,50 7х2,50
185/24 18,9 0,154 24х3,15 7х2,10
185/29 18,8 0,159 26х2,98 7х2,30
185/43 19,6 0,156 30х2,80 7х2,80
185/128 23,1 0,154 54х2,10 37х2,10

При переходе ВЛ через железную дорогу, водные преграды, инженерные сооружения применяются усиленные провода марки АС. Например, провод АС-95/16 содержит одну стальную проволоку диаметром 4,5 мм площадью 16 мм 2 . Разрывное усилие кгс (3,4 тс), кг.

Провод АС-95/141 содержит стальной сердечник из 37 проволок диаметром по 2,2 мм каждая. Суммарная площадь поперечного сечения стального сердечника 141 мм 2 . Разрывное усилие кгс (18,5 тс), что в 5,4 раза больше чем у провода АС-95/16 с такой же площадью алюминиевых проволок. Масса 1 км провода АС-95/141 кг, в 3,5 раза тяжелее провода АС-95/16.

Провода марки АС прочнее проводов марки А примерно в 1,5 раза, но они при этом во столько же раз и тяжелее.

В электрических расчетах проводимость стального сердечника не учитывают, так как его проводимость составляет всего 4% от алюминиевого. Удельное сопротивление алюминия при 20ºС Ом·мм 2 /м, т.е. сопротивление 1 м провода сечением 1 мм 2 Ом. Удельное сопротивление железа (стали) Ом·мм 2 /м. Сопротивление железа в 3,57 раз больше, чем у алюминия (0,100/0,028=3,57). В проводе АС-50/8 площадь стального сердечника в 6,25 раз меньше, чем у алюминия (50/8 = 6,25). Сопротивление стального сердечника в 22,3 раза больше, чем алюминиевого (6,25·3,57 = 22,3), т.е. проводимость составляет 4% (1·100/22,3 = 4,4%).

Сталеалюминевые провода изготавливают с различным соотношением площадей сечений алюминиевой и стальной частей: для проводов нормальной прочности 6:1; для усиленных 4:1; для особо усиленных 1,5:1.

Провода с облегченными сердечниками имеют соотношение 8:1, особо облегченные (12-18):1.

Для увеличения продолжительности работы алюминиевых и сталеалюминевых проводов в течение всего срока службы (40 лет) их покрывают антикоррозионной защитной электросетевой смазкой ЗЭС.

Если в проводе марки А межпроволочные пазы заполнены антикоррозионной смазкой, то шифр обозначения провода АКП.

Если в проводе АС сердечник заполнен антикоррозионной смазкой, то шифр обозначения АСКС, при заполнении всего провода – АСКП.

Если в проводе АС сердечник обмотан полиэтиленовой пленкой, то шифр обозначения АСК.

ВЛ-35 кВ и выше выполняются сталеалюминевыми проводами облегченной конструкции (АСО) при толщине стенки гололеда до 20 мм и усиленной (АСУ) при толщине свыше 20 мм.

Провода из меди маркируются буквой М, например, М-50, где 50 – суммарная площадь поперечного сечения проволок.

Для грозозащитных тросов используют стальные оцинкованные многопроволочные провода марки ПС, например, ПС-25 (П – провод, С – стальной многопроволочный, 25 – суммарная площадь поперечного сечения проволок, табл. 3.5).

Таблица 3.5

Стальные оцинкованные провода марки ПС

Стальные однопроволочные провода марки ПСО изготавливаются с диаметрами 3,5, 4, 5 мм и обозначаются, например, ПСО-5 (П – провод, С – стальной, О – однопроволочный, 5 – диаметр, мм).

Строительная длина – это количество провода на барабане без разрыва. Например, длина провода А-35 на барабане 4000 м (4 км).

Провода марки АЖ представляют собой сплав алюминия с магнием и кремнием ().

Провода марки АС применяются для системообразующих и распределительных ВЛ напряжением 35, 110, 220 кВ и выше, где необходима повышенная прочность при воздействии ветровых нагрузках и гололеде.

Для внутри карьерных распределительных ВЛ-6(10) кВ рекомендуется принимать провод марки А. Он легче, мягче, с ним удобнее работать, легче монтировать. Провод А-120 кг/км в 1,6 раза легче провода АС-120/27 кг/км.

Самонесущие изолированные провода

Самонесущие изолированные провода (СИП) изготавливаются многопроволочными из алюминиевой проволоки и покрываются изоляцией из полиэтилена (LД, РЕ, ХLРЕ). Номинальное напряжение марки СИП-1 и СИП-2 до 1000 В, СИП-3 – 20 кВ.

Пример сечений: 1х16+1х25; 3х35+1х50; 4х16+1х25.

Провода СИП-3 одножильные сечением 50, 70, 95, 120, 150 мм 2 .

Достоинства СИП:

1. Алюминиевые провода не разрушаются коррозией.

2. СИП можно прокладывать по стенам зданий.

3. СИП безопаснее, снижается вероятность коротких замыканий.

4. СИП интенсивно внедряется в городских электрических сетях, заменяя голые провода марки А и АС.

Изоляторы

Изоляторы предназначены для изоляции проводов ВЛ от опор и для крепления их к опорам. Традиционный материалы для изготовления изоляторов – фарфор и стекло. Новый материал – полимеры. На рис. 3.7 показана гирлянда изоляторов из фарфора для ВЛ-110 и полимерный изолятор взамен данной гирлянды.

Изолятор состоит из изоляционного элемента и металлической арматуры для крепления изоляторов к опоре.

На ВЛ 0,4, 6, 10 кВ следует применять штыревые изоляторы, на ВЛ 35 кВ штыревые и подвесные, на ВЛ 110, 220 кВ и выше только подвесные. Подвесные изоляторы собирают в гирлянды из отдельных изоляторов при помощи специальной сцепной арматуры.

Рис. 3.7. Гирлянда изоляторов из фарфора и полимерный стержень

Число изоляторов в гирлянде в зависимости от напряжения ВЛ:

6, 10 кВ – 1 изолятор;

35 кВ – 3 изолятора;

110 кВ – 7 изоляторов;

220 кВ – 14 изоляторов.

Поддерживающие гирлянды располагаются вертикально на промежуточных опорах. Натяжные гирлянды располагаются почти горизонтально на анкерных опорах.

Изоляторы из стекла предпочтительнее фарфоровых. Во-первых, они прочнее фарфоровых и, во-вторых, легче отыскивать трещины и утечки тока.

Гасители вибраций

Для проводов характерны вибрация и пляска. Вибрация возникает при слабом ветре и представляет собой периодические колебания в вертикальной плоскости с частотой 5-50 Гц и с амплитудой до трех диаметров провода. Под ее действием возникают динамические переменные усилия, приводящие к разрыву проволочек в местах крепления.

Пляска возникает под действием порывистого ветра (5-20 м/с) на провода, покрытые гололедом. Частота колебаний составляет 0,2-0,4 Гц, амплитуда колебаний до 5 м. Это приводит к схлестыванию проводов и поломке опор.

Для защиты проводов от колебаний в вертикальной плоскости используются гасители вибраций. При сечении проводов А35 – А95, АС25 – АС70 шпилевого типа. При сечениях А120 и АС95 и более в виде стального троса с двумя чугунными грузами (рис. 3.8).

Рис. 3.8. Гаситель вибрации проводов

Масса льда в 6,4 раза больше массы самого провода (1775/276=6,4).

Территория России по гололедности разбита на 5 районов (табл. 3.6).

Таблица 3.6

Иркутская область относится ко II району.

Транспозиция в электротехнике, изменение взаимного расположения проводов отдельных фаз по длине воздушной линии электропередачи (ЛЭП) для уменьшения нежелательного влияния ЛЭП друг на друга и на близлежащие линии связи. При Т. вся ЛЭП условно разделяется на участки, число которых кратно числу фаз. При переходе с одного участка на другой фазы меняются местами так, что каждая из них попеременно занимает положение остальных. Длина участка определяется условиями надёжной работы ЛЭП, стоимостью её сооружения и требованиями симметрии её токов и напряжений, возрастающей в результате выравнивания значений индуктивности и ёмкости фаз ЛЭП при Т. Выполняют Т. на ЛЭП длиной свыше 100 км и напряжением от 110 кв и выше. Полный цикл Т. фаз осуществляется на длине не свыше 300 км .

Лит.: Мельников Н. А., Электрические сети и системы, М., 1975.

  • - в комбинаторике перестановка элементов данной совокупности, при к-рой меняются местами только 2 элемента; напр., 586703 переходит в 786503 посредством Т. элементов 7 и 5...

    Естествознание. Энциклопедический словарь

  • - перестановка, перемещающая только два символа, два элемента, например, 123 переходит в 213...

    Начала современного Естествознания

  • - всемирная организация: - основанная на личном членстве; - содействующая развитию теории и практики компьютерной техники, а также методов обработки информации...

    Финансовый словарь

  • - Магистраль или магистральный провод - в электротехнике называют главные толстые провода, ведущие от источника электрической энергии, от которых уже ответвляются побочные провода к местам потребления электрической...
  • - прибор, употребляемый для разряда лейденских банок. Обыкновенный Р. имеет вид щипцов из двух медных стержней с шариками на концах. К медным стержням прикреплены стеклянные ручки...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Сопротивление индуктивное...
  • - Перенапряжение в электротехнике, повышение напряжения представляющее опасность для изоляции электрической установки...

    Большая Советская энциклопедия

  • - I Транспози́ция в музыке, перенос всех звуков музыкального произведения на определённый интервал вверх или вниз. Т. на любой интервал, кроме октавы, меняет тональность...

    Большая Советская энциклопедия

  • - в музыке перенос всех звуков музыкального произведения или его части на определенный интервал вверх или вниз. Применяется главным образом для исполнения произведения голосом или инструментом другого диапазона...

    Современная энциклопедия

  • - в комбинаторике перестановка элементов данной совокупности, при которой меняются местами только 2 элемента; напр., 586703 переходит в 786503 посредством транспозиции элементов 7 и 5...
  • - в музыке перенос всех звуков музыкального произведение на определенный интервал вверх или вниз, приводящий к изменению его тональности...

    Большой энциклопедический словарь

  • - 1. Прием для создания соответствий путем изменения структуры высказывания при сохранении типа сообщения. 2. Перевода текста одного жанра или функционального стиля в другой жанр или функциональный стиль. 3...

    Толковый переводоведческий словарь

  • - в языкознании: "положительный перенос" знаний родного языка на изучение неродного, что позволяет наиболее быстро изучить чужой...

    Словарь лингвистических терминов Т.В. Жеребило

  • - Р., Д., Пр. транспози/ции...

    Орфографический словарь русского языка

  • - транспози/ция,...

    Слитно. Раздельно. Через дефис. Словарь-справочник

  • - ТРАНСПОЗИ́ЦИЯ, транспозиции, жен. . То же, что транспонировка...

    Толковый словарь Ушакова

"Транспозиция (в электротехнике)" в книгах

Невероятная транспозиция

Из книги Школа карточных фокусов автора Коцыло Виталий Васильевич

Невероятная транспозиция Этот эффектный трюк Фила Гольдштейна производит сильное впечатление. Прежде всего найдите четырех королей и положите их одноцветными парами немного эше-лонированно.Затем вы предлагаете зрителю перетасовать колоду и снять её на две стопки,

1-й комментарий - сталинские подходы в электротехнике

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир

1-й комментарий - сталинские подходы в электротехнике В сталинскую эпоху, в 1932–39 г. г., и 1948–52 гг. были предприняты две попытки доказать либо полный приоритет, либо большое значение достижений русской и советской науки по отношению к мировой. Не избежал этой «участи»

Перенапряжение (в электротехнике)

Из книги Большая Советская Энциклопедия (ПЕ) автора БСЭ

Индуктивное сопротивление в электротехнике

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Транспозиция (в математике)

БСЭ

Транспозиция (в музыке)

Из книги Большая Советская Энциклопедия (ТР) автора БСЭ

Транспозиция (в электротехнике)

Из книги Большая Советская Энциклопедия (ТР) автора БСЭ

12.3. Транспозиция

Из книги Delphi. Трюки и эффекты автора Чиртик Александр Анатольевич

12.3. Транспозиция Следующий шифр, который мы будем рассматривать, называется транспозицией с фиксированным периодом d. В этом случае сообщение делится на группы символов длины d и к каждой группе применяется одна и та же перестановка. Эта перестановка является ключом и

ТРАНСПОЗИЦИЯ МАГИСТРАЛЬНЫХ СОСУДОВ

Из книги Детские болезни. Полный справочник автора Автор неизвестен

ТРАНСПОЗИЦИЯ МАГИСТРАЛЬНЫХ СОСУДОВ При данной патологии от правого желудочка отходит аорта с коронарными сосудами, от левого – суженная легочная артерия. Жизнеспособными в этих случаях дети могут быть только в случаях, если существует сообщение между желудочками,

Транспозиция

Из книги Аристос автора Фаулз Джон Роберт

Транспозиция 54. Первый шаг в этом направлении - исключить страсть как источник напряженности. Второй - признать единосущие брачной пары. В страсти все происходит между тобой и мной, в гармонии - между ними и нами. Я - ты означает страсть, мы - они - гармонию. Мы знаем

Визуальная транспозиция.

Из книги Из истории французской киномысли: Немое кино 1911-1933 гг. автора Ямпольский Михаил Бенеаминович

Визуальная транспозиция. Кино едва выходит из детства. Оно проходит через период формирования, опытов, разрозненных исследований, блуждания на ощупь и ошибок, через самый захватывающий период, когда перед ним открываются все пути, богатые возможностями, будущими

Транспозиция как образ жизни

Из книги Разочарование в Боге автора Янси Филипп

Транспозиция как образ жизни Человеческий мозг показывает нам идеальный пример действия транспозиции. В рамках тела мозг является символом восприятия «сверху», но сам по себе - в отрыве от других органов и частей тела - мозг совершенно беспомощен. Он заключен внутри

Основные требования по электротехнике

Из книги Грузовые автомобили. Электрооборудование автора Мельников Илья

Основные требования по электротехнике Современный автомобиль не может работать без электрического тока.Электрическую энергию используют в автомобиле для зажигания рабочей смеси в цилиндрах карбюраторных и газовых двигателей, пуска двигателя стартером, питания

Изобретение относится к области железных дорог, электрифицированных на переменном токе, и направлено на обеспечение нормального функционирования высоковольтных линий с изолированной нейтралью в условиях интенсивного воздействия электромагнитного поля контактной сети железной дороги. Устройство транспозиционной геометрии проводов воздушной высоковольтной линии содержит: опоры линии, кронштейны для крепления в ряд двух изоляторов по углам основания условного пространственного равностороннего треугольника, стороны которого увеличены в минимально допустимый размер сближения. Для симметрирования погонных электрических параметров линии применена шестишаговая транспозиция проводов - фаз в цикле с поворотом проводов - фаз на 60° на каждой опоре и вращением проводов по всей длине линии. Геометрическое расположение проводов на опорах по углам условного пространственного равностороннего треугольника выполнено с помощью чередующихся по высоте и разных по длине кронштейнов с подвесными изоляторами, на которых крепятся провода - фазы. Технический результат заключается в снижении электромагнитного воздействия контактной сети железной дороги на функционирование высоковольтных линий с изолированной нейтралью. 2 ил.

Рисунки к патенту РФ 2460654

Изобретение относится к аппаратуре, обеспечивающей нормальное функционирование высоковольтных линий с изолированной нейтралью, а также линий, использующих систему два - провода заземленный провод (ДПЗП патент от 10.11.2006 г. № 2286891) в условиях интенсивного воздействия электромагнитного поля контактной сети железной дороги. Снижение несимметрии треугольника питающих напряжений потребителей систем с изолированной нейтралью и ДПЗП от электромагнитного влияния контактной сети зависит от геометрии расположения проводов на опорах. Задача заключается в том, чтобы влияющее электромагнитное поле оказывало одинаковое воздействие на все три провода. Тогда уровни наведенных напряжений как от магнитной, так и от электрической составляющих, в точках подключения потребителей, будут одинаковы, и разности потенциалов по фазам линии от влияний будут стремиться к нулю. Соответственно, на самом потребителе будет только напряжение питания. Поставленную цель можно достигнуть, создав одинаковое расстояние от каждого из проводов линии до эквивалента влияния контактной сети. Под эквивалентом влияния контактной сети следует понимать геометрическую расположенность всех токоведущих элементов (контактный провод, несущий трос, струнки и т.д.) и, кроме того, такую же геометрию от параллельного - второго пути. Вся эта геометрия трех проводов должна сводиться в условную геометрическую точку. Если все три провода будут параллельно разнесены в пространстве, то такая задача конструктивно не решаема. Однако если свести три провода в единую геометрическую точку влияния, то можно получить положительный результат. Транспозиция проводов ВЛ обеспечивает выравнивание индуктивностей и емкостей отдельных фаз, уменьшение влияния на соседние параллельные воздушные линии, тем самым обеспечивая качественную передачу электроэнергии к потребителю. Транспозиция заключается во взаимном обмене местами проводов различных фаз на протяжении всей линии. Для этого вся длина линии делится на части, число которых кратно трем, и каждая фаза, переходя с одного участка на другой, меняется местами с другими фазами, что описано в учебнике: «Электроснабжение нетяговых потребителей железных дорог». Ратнер М.П., Могилевский Е.Л. - М.: Транспорт, 1985 г. Устройство принято в качестве прототипа. В прототипе применяют длину шага транспозиции 3 км. Три шага транспозиции (при каждом шаге смещение проводов на 120°) обеспечивает через 360° полное перекрещивание проводов, что составляет цикл транспозиции.

Транспозиция проводов выполняется на специальной транспозиционной опоре или в пролете (промежуток между опорами), подходящий к транспозиционной опоре. Если транспозиция выполняется в пролете, то в месте крепления проводов на опоре, для защиты их от перехлеста, необходимо в два раза увеличить минимально допустимое расстояние между проводами. В остальных пролетах линии (3 км) провода идут параллельно друг другу до следующего шага транспозиции. Между шагами транспозиции электрические параметры несимметричны. К основным погонным электрическим параметрам линии, влияющим на качества передачи электроэнергии, относятся погонная индуктивность, погонная емкость, погонная проводимость и коэффициент распространения.

Погонная индуктивность линий обусловлена магнитным потоком, пронизывающим рамку, образованная проводами цепи, а также магнитным потоком внутри проводов цепи.

Из этого следует, что внешняя индуктивность не зависит от частоты и определяется геометрическими параметрами самой и влияющей линий. Если шаг транспозиции достаточно значителен и составляет 3 км, а цикл 9 км, то на протяжении 9 км происходит постоянное значительное изменение внешней индуктивности по длине всей линии, а косое сближение дополнительно вносит несимметрию электрических погонных параметров. Разброс параметров внешней индуктивности по длине линии отрицательным образом сказывается на качестве электроэнергии у потребителей, подключенных к одной и той же линии.

Симметрирование погонных электрических параметров, в основном, выполняется в кабелях связи, а также силовых кабелях электропитания, которых принимаем в качестве аналога ( Теория передачи сигналов электросвязи . Ю.С.Шинаков, Ю.М.Колодяжный - М.; Радио и связь, 1989). Симметричная кабельная цепь представляет собой жилы, скрученные в звездную четверку по всей длине кабеля. Благодаря скрутке в звездную четверку, каждый из проводов имеет одинаковую емкость по отношению к земле и к любому другому проводу другой цепи. Погонная индуктивность в кабельных линиях по отношению к воздушным линиям значительно меньше за счет уменьшения внешней индуктивности.

В симметричных кабельных линиях основным преимуществом является симметричность погонных электрических параметров. Кроме того, для более точной подгонки этих параметров применяют еще индивидуальное трехэтапное симметрирование. Однако существенным недостатком кабельных линий, из-за малого расстояния между жилами, является большая погонная емкость по отношению к воздушным линиям. Этот недостаток влияет на переходные коммутационные процессы и, тем самым, ограничивает длину непрерывных кабельных линий (длина силовых непрерывных кабельных линий не более 60 км).

Предлагаемое устройство транспозиционной геометрии проводов для снижения электромагнитного воздействия максимально использует все преимущества как воздушных, так и кабельных линий. То есть предлагаемое устройство использует симметрию погонных электрических параметров кабелей, но с малой погонной емкостью, которой обладают воздушные проводные линии.

Цель изобретения - создание устройства транспозиционной геометрии проводов воздушной высоковольтной линии электроснабжения с повышенной симметрией погонных электрических параметров линии находящейся в условиях интенсивного воздействия электромагнитного поля контактной сети железных дорог, электрифицированных на переменном токе.

Погонное равенство всех электрических параметров проводов - фаз линии достигается путем применения транспозиции трех проводов на каждом межпролетном пространстве по всей длине линии, с применением не трехшаговой межпролетной транспозиции с поворотом на 120° (требующей двукратного увеличения допустимого безопасного расстояния между проводами и имеющей на основании этого расстояние между шагами 3 км), а шестишагового поворота на 60° на каждой опоре. Шестишаговый поворот проводов на 60° по окружности на каждой опоре (показанный на расчетной схеме фиг.1 и пространственной схеме фиг.2), который увеличивает расстояние между проводами в опорных точках по отношению к середине пролета лишь на коэффициент 1.15, позволяя использовать стандартизированные конструкции кронштейнов и опор, тем самым сохраняя нормируемые габариты и разгружая опору до стандартных значений нагрузки, а также позволяя выполнять транспозиционный шаг на каждом пролете без пропусков. Эта транспозиционная геометрия проводов дает возможность применить ее не только для напряжений 6 (10) кВ, но и с более высокими значениями напряжений 27,35 кВ и даже выше. Применение расположения проводов на опорах по углам условного пространственного равностороннего треугольника (см. пунктиром фиг.1) позволяет получить высокий уровень симметрирования погонных электрических параметров линии.

В устройстве имеются: опоры линии - 1; кронштейны для крепления двух изоляторов в ряд по углам основания условного пространственного равностороннего треугольника, стороны которого увеличены в 1.15D - нормированного минимально допустимого размера сближения - 2; кронштейны для крепления одного изолятора на третьем угле условного пространственного равностороннего треугольника - 3; подвесные гирлянды изоляторов - 4; провода - фазы высоковольтной трехфазной линии - 5, 6 и 7; эквивалент влияющей контактной сети - 8.

Устройство работает следующим образом. Электромагнитное поле контактной сети 8 облучает своими магнитной и электрической составляющими провода - фазы 5, 6 и 7.

Эти провода 5, 6 и 7 за счет своего постоянного вращения вдоль всей длины линии имеют одинаковые погонные электрические параметры. Соответственно, они получают одинаковое воздействие от обоих составляющих электромагнитного поля контактной сети 8. За счет соразмерности расстояния до эквивалента контактной сети 8 обеспечивается равенство наведенных электрических величин на всех трех проводах 5, 6, 7. В результате на подключенных к этой линии потребителях взаимно уничтожаются магнитная и электрическая составляющие электромагнитного поля контактной сети 8. Выполненный на каждой опоре 1 условный пространственный равносторонний треугольник с увеличенными сторонами в 1.15 (для невозможности перехлеста проводов), образованный с помощью чередующихся по высоте и разных по длине кронштейнов 2 и 3 с подвесными изоляторами 4, на которых крепятся провода - фазы 5, 6 и 7, дополнительно сближает равенство погонных электрических параметров линии.

Предлагаемое устройство транспозиционной геометрии проводов воздушной высоковольтной линии электроснабжения с повышенной симметрией погонных электрических параметров линии находящейся в условиях интенсивного воздействия электромагнитного поля контактной сети железных дорог, электрифицированных на переменном токе, обеспечивает высокое качество поставляемой электроэнергии потребителям и снимает конструктивный предел использования для более высоких напряжений.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Устройство транспозиционной геометрии проводов воздушной высоковольтной линии электроснабжения с повышенной симметрией погонных электрических параметров линии, находящейся в условиях интенсивного воздействия электромагнитного поля контактной сети железных дорог, электрифицированных на переменном токе, содержащее: контактную сеть переменного тока, излучающую электромагнитное поле и высоковольтную линию с транспозицией проводов, находящуюся в зоне этого электромагнитного поля, отличающееся тем, что для симметрирования погонных электрических параметров линии применяется шестишаговая транспозиция проводов - фаз в цикле с их поворотом на 60° (на каждой опоре), их вращением (по всей длине линии) и их геометрическим расположением на опорах по углам условного пространственного равностороннего треугольника, выполненного с помощью чередующихся по высоте и разных по длине кронштейнов с подвесными изоляторами, на которых крепятся провода - фазы.

Пример моделирования в программе ELCUT. Транспозиция проводов воздушной линии электропередачи.
Страница примера на сайте поддержки пользователей программы:
http://elcut.ru/advanced/transposition_r.htm. На этой странице даны файлы задачи и подробные результаты анализа данного примера.
Сайт www.elcut.ru содержит материалы для изучения программы и лёгкого старта в инженерных расчётах, Вы можете бесплатно скачать ELCUT Студенческий для решения простых задач.
Условия приобретения лицензии – для предприятий и льготные - для ВУЗов.
Техническая помощь по адресу [email protected]. Обращайтесь, будем рады помочь освоить программу.


Участок воздушной линии электропередачи класса 110 кВ, длиной 120 километров.
Тип задачи: Плоская задача магнитного поля переменных токов.
Геометрия: Опора ЛЭП. Все размеры в метрах. Схема транспозиции. Длина линии l = 120 км
Исходные данные: Номинальное напряжение линии (действующее) Uл = 110 кВ
Rнагр = 100 Ом, Lнагр = 0.23 Гн.
Задание: Определить индуктивность фазы линии электропередачи.

Решение:
Согласно ПУЭ, на ВЛ 110-500 кВ длиной более 100 км для ограничения несимметрии токов и напряжений должен выполняться один полный цикл транспозиции. Шаг транспозиции по условию влияний на линии связи не нормируется. При этом транспозиция должна осуществляться так, чтобы суммарные длины участков ВЛ с различным чередованием фаз были примерно равны.
Длина нашей линии составляет 120 км, и на протяжении всего участка электропередачи происходит полный цикл транспозиции проводов линии. Расстояние между точками транспозиции (транспозиционными опорами) составляет 40 км.
Для учета различного расположения отрезков линии они все были добавлены в модель. Участки были изолированы по магнитному полю, и не создавали помех друг другу, но были связаны в цепи. Таким образом в единой задаче удалось учесть различное распределение проводников.
Полное сопротивление линии складывается из сопротивлений отдельных участков и может быть найдено как падение напряжения на отдельный участках, деленное на ток:
Zл = (U1 + U2 + U3) / I.
Cопротивление линии может быть представлено, как сумма активного сопротивления (R) и индуктивного сопротивления (Xл):
Zл = Rл + j Xл.
Для определения индуктивности линии воспользуемся законом Ома и соотношением между индуктивным сопротивлением и индуктивностью:
L = Xл / 2 π f,
где Xл - индуктивное сопротивление фазы линии;
f - частота тока.

Результаты расчета: Таблица измеренных токов и напряжений для фазы А.

Загрузить файлы задачи: http://elcut.ru/examples/transposition.zip Сопротивление ZC, Ом
Посмотреть подробно геометрию и результаты: http://elcut.ru/advanced/transposition_r.htm
Транспозиция проводов воздушной линии электропередачи

Видео Транспозиция проводов воздушной линии электропередачи. Пример моделирования в ELCUT канала elcut2010