Найти экстремумы функции. Экстремумы функции: признаки существования, примеры решений



Очень важную информацию о поведении функции предоставляют промежутки возрастания и убывания. Их нахождение является частью процесса исследования функции и построения графика . К тому же точкам экстремума, в которых происходит смена с возрастания на убывание или с убывания на возрастание, уделяется особое внимание при нахождении наибольшего и наименьшего значения функции на некотором интервале.

В этой статье дадим необходимые определения, сформулируем достаточный признак возрастания и убывания функции на интервале и достаточные условия существования экстремума, применим всю эту теорию к решению примеров и задач.

Навигация по странице.

Возрастание и убывание функции на интервале.

Определение возрастающей функции.

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Определение убывающей функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


ЗАМЕЧАНИЕ: если функция определена и непрерывна в концах интервала возрастания или убывания (a;b) , то есть при x=a и x=b , то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X .

К примеру, из свойств основных элементарных функций мы знаем, что y=sinx определена и непрерывна для всех действительных значений аргумента. Поэтому, из возрастания функции синуса на интервале мы можем утверждать о возрастании на отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Не путайте экстремумы функции с наибольшим и наименьшим значением функции.


На первом рисунке наибольшее значение функции на отрезке достигается в точке максимума и равно максимуму функции, а на втором рисунке – наибольшее значение функции достигается в точке x=b , которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

  • если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;
  • если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

Рассмотрим пример нахождения промежутков возрастания и убывания функции для разъяснения алгоритма.

Пример.

Найти промежутки возрастания и убывания функции .

Решение.

На первом шаге нужно найти область определения функции . В нашем примере выражение в знаменателе не должно обращаться в ноль, следовательно, .

Переходим к нахождению производной функции:

Для определения промежутков возрастания и убывания функции по достаточному признаку решаем неравенства и на области определения. Воспользуемся обобщением метода интервалов. Единственным действительным корнем числителя является x = 2 , а знаменатель обращается в ноль при x=0 . Эти точки разбивают область определения на интервалы, в которых производная функции сохраняет знак. Отметим эти точки на числовой прямой. Плюсами и минусами условно обозначим интервалы, на которых производная положительна или отрицательна. Стрелочки снизу схематично показывают возрастание или убывание функции на соответствующем интервале.

Таким образом, и .

В точке x=2 функция определена и непрерывна, поэтому ее следует добавить и к промежутку возрастания и к промежутку убывания. В точке x=0 функция не определена, поэтому эту точку не включаем в искомые интервалы.

Приводим график функции для сопоставления с ним полученных результатов.

Ответ:

Функция возрастает при , убывает на интервале (0;2] .

Достаточные условия экстремума функции.

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех признаков экстремума, конечно, если функция удовлетворяет их условиям. Самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y=f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна.

Другими словами:

Алгоритм нахождения точек экстремума по первому признаку экстремума функции.

  • Находим область определения функции.
  • Находим производную функции на области определения.
  • Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (все перечисленные точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).
  • Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).
  • Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак - они и являются точками экстремума.

Слишком много слов, рассмотрим лучше несколько примеров нахождения точек экстремума и экстремумов функции с помощью первого достаточного условия экстремума функции.

Пример.

Найти экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел, кроме x=2 .

Находим производную:

Нулями числителя являются точки x=-1 и x=5 , знаменатель обращается в ноль при x=2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x=-2, x=0, x=3 и x=6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.

В точке x=-1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x=-1 – точка максимума, ей соответствуем максимум функции .

В точке x=5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x=-1 – точка минимума, ей соответствуем минимум функции .

Графическая иллюстрация.

Ответ:

ОБРАТИТЕ ВНИМАНИЕ: первый достаточный признак экстремума не требует дифференцируемости функции в самой точке .

Пример.

Найдите точки экстремума и экстремумы функции .

Решение.

Областью определения функции является все множество действительных чисел. Саму функцию можно записать в виде:

Найдем производную функции:

В точке x=0 производная не существует, так как значения односторонних пределов при стремлении аргумента к нулю не совпадают:

В это же время, исходная функция является непрерывной в точке x=0 (смотрите раздел исследование функции на непрерывность):

Найдем значения аргумента, при котором производная обращается в ноль:

Отметим все полученные точки на числовой прямой и определим знак производной на каждом из интервалов. Для этого вычислим значения производной в произвольных точках каждого интервала, к примеру, при x=-6, x=-4, x=-1, x=1, x=4, x=6 .

То есть,

Таким образом, по первому признаку экстремума, точками минимума являются , точками максимума являются .

Вычисляем соответствующие минимумы функции

Вычисляем соответствующие максимумы функции

Графическая иллюстрация.

Ответ:

.

Второй признак экстремума функции.

Как видите, этот признак экстремума функции требует существования производной как минимум до второго порядка в точке .

Прежде, чем научиться находить экстремумы функции, необходимо понять, что же такое экстремум. Самое общее определение экстремума гласит, что это употребляемое в математике наименьшее или наибольшее значение функции на определенном множестве числовой линии или графике. В том месте, где находится минимум, появляется экстремум минимума, а там, где максимум – экстремум максимума. Также в такой дисциплине, как математический анализ, выделяют локальные экстремумы функции. Теперь давайте рассмотрим, как найти экстремумы.

Экстремумы в математике относятся к важнейшим характеристикам функции, они показывают её самое большое и самое маленькое значение. Находятся экстремумы преимущественно в критических точках находимых функций. Стоит отметить, что именно в точке экстремума функция кардинально меняет своё направление. Если просчитать производную от точки экстремума, то она, согласно определению, должна быть равна нулю или же вовсе будет отсутствовать. Таким образом, чтобы узнать, как найти экстремум функции, необходимо выполнить две последовательные задачи:

  • найти производную для той функции, которую необходимо определить заданием;
  • найти корни уравнения.

Последовательность нахождения экстремума

  1. Оформите в письменном виде функцию f(x), которая задана. Найдите её производную первого порядка f "(x). То выражение, которое получится, приравняйте к нулю.
  2. Теперь вам предстоит решить то уравнение, которое получилось. Результирующие решения и будут корнями уравнения, а также критическими точками определяемой функции.
  3. Теперь определяем, какими именно критическими точками (максимума или минимума) являются найденные корни. Следующим этапом, после того, как мы узнали, как находить точки экстремума функции, является нахождение второй производной от искомой функции f " (x). Необходимо будет подставить в конкретное неравенство значения найденных критических точек и затем посчитать, что получится. Если произойдет так, что вторая производная окажется больше нуля в критической точке, то ею и будет являться точка минимума, а в противном случае – это будет точка максимума.
  4. Остаётся посчитать значение начальной функции в необходимых точках максимума и минимума функции. Чтобы это сделать, подставляем полученные значения в функцию и рассчитываем. Однако стоит отметить, что, если критическая точка оказалась максимумом, то и экстремум будет максимальным, а если минимумом, то минимальным по аналогии.

Алгоритм нахождения экстремума

Чтобы обобщить полученные знания, составим краткий алгоритм того, как находить точки экстремума.

  1. Находим область определения заданной функции и её интервалы, которые точно определяют, на каких промежутках функция непрерывна.
  2. Находим производную от функции f "(x).
  3. Вычисляем критические точки уравнения y = f (x).
  4. Анализируем изменения направления функции f (x), а также знак производной f "(x) там, где критические точки разделяют область определения данной функции.
  5. Теперь определяем, является ли каждая точка на графике максимумом или минимумом.
  6. Находим значения функции в тех точках, которые являются экстремумами.
  7. Фиксируем результат данного исследования – экстремумы и промежутки монотонности. Вот и все. Теперь мы рассмотрели, как можно найти экстремум на любом промежутке. Если вам необходимо найти экстремум на определенном промежутке функции, то делается это аналогичным образом, только обязательно учитываются границы производимого исследования.

Итак, мы рассмотрели, как найти точки экстремума функции. При помощи несложных вычислений, а также знаний о нахождении производных, можно найти любой экстремум и вычислить его, а также графически его обозначить. Нахождение экстремумов является одним из важнейших разделов математики, как в школе, так и в Высшем учебном заведении, поэтому, если вы научитесь правильно их определять, то учиться станет намного проще и интереснее.

Пусть функция $z=f(x,y)$ определена в некоторой окрестности точки $(x_0,y_0)$. Говорят, что $(x_0,y_0)$ - точка (локального) максимума, если для всех точек $(x,y)$ некоторой окрестности точки $(x_0,y_0)$ выполнено неравенство $f(x,y)< f(x_0,y_0)$. Если же для всех точек этой окрестности выполнено условие $f(x,y)> f(x_0,y_0)$, то точку $(x_0,y_0)$ называют точкой (локального) минимума.

Точки максимума и минимума часто называют общим термином - точки экстремума.

Если $(x_0,y_0)$ - точка максимума, то значение функции $f(x_0,y_0)$ в этой точке называют максимумом функции $z=f(x,y)$. Соответственно, значение функции в точке минимума именуют минимумом функции $z=f(x,y)$. Минимумы и максимумы функции объединяют общим термином - экстремумы функции.

Алгоритм исследования функции $z=f(x,y)$ на экстремум

  1. Найти частные производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$. Составить и решить систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$. Точки, координаты которых удовлетворяют указанной системе, называют стационарными.
  2. Найти $\frac{\partial^2z}{\partial x^2}$, $\frac{\partial^2z}{\partial x\partial y}$, $\frac{\partial^2z}{\partial y^2}$ и вычислить значение $\Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2$ в каждой стационарной точке. После этого использовать следующую схему:
    1. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} > 0$ (или $\frac{\partial^2z}{\partial y^2} > 0$), то в исследуемая точка есть точкой минимума.
    2. Если $\Delta > 0$ и $\frac{\partial^2z}{\partial x^2} < 0$ (или $\frac{\partial^2z}{\partial y^2} < 0$), то в исследуемая точка есть точкой максимума.
    3. Если $\Delta < 0$, то в расматриваемой стационарной точке экстремума нет.
    4. Если $\Delta = 0$, то ничего определённого про наличие экстремума сказать нельзя; требуется дополнительное исследование.

Примечание (желательное для более полного понимания текста): показать\скрыть

Если $\Delta > 0$, то $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2 > 0$. А отсюда следует, что $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > \left(\frac{\partial^2z}{\partial x\partial y} \right)^2 ≥ 0$. Т.е. $\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2} > 0$. Если произведение неких величин больше нуля, то эти величины одного знака. Т.е., например, если $\frac{\partial^2z}{\partial x^2} > 0$, то и $\frac{\partial^2z}{\partial y^2} > 0$. Короче говоря, если $\Delta > 0$ то знаки $\frac{\partial^2z}{\partial x^2}$ и $\frac{\partial^2z}{\partial y^2}$ совпадают.

Пример №1

Исследовать на экстремум функцию $z=4x^2-6xy-34x+5y^2+42y+7$.

$$ \frac{\partial z}{\partial x}=8x-6y-34; \frac{\partial z}{\partial y}=-6x+10y+42. $$

$$ \left \{ \begin{aligned} & 8x-6y-34=0;\\ & -6x+10y+42=0. \end{aligned} \right. $$

Сократим каждое уравнение этой системы на $2$ и перенесём числа в правые части уравнений:

$$ \left \{ \begin{aligned} & 4x-3y=17;\\ & -3x+5y=-21. \end{aligned} \right. $$

Мы получили систему линейных алгебраических уравнений . Мне в этой ситуации кажется наиболее удобным применение метода Крамера для решения полученной системы.

$$ \begin{aligned} & \Delta=\left| \begin{array} {cc} 4 & -3\\ -3 & 5 \end{array}\right|=4\cdot 5-(-3)\cdot (-3)=20-9=11;\\ & \Delta_x=\left| \begin{array} {cc} 17 & -3\\ -21 & 5 \end{array}\right|=17\cdot 5-(-3)\cdot (-21)=85-63=22;\\ & \Delta_y=\left| \begin{array} {cc} 4 & 17\\ -3 & -21 \end{array}\right|=4\cdot (-21)-17\cdot (-3)=-84+51=-33.\end{aligned} \\ x=\frac{\Delta_{x}}{\Delta}=\frac{22}{11}=2; \; y=\frac{\Delta_{y}}{\Delta}=\frac{-33}{11}=-3. $$

Значения $x=2$, $y=-3$ - это координаты стационарной точки $(2;-3)$.

$$ \frac{\partial^2 z}{\partial x^2}=8; \frac{\partial^2 z}{\partial y^2}=10; \frac{\partial^2 z}{\partial x \partial y}=-6. $$

Вычислим значение $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 8\cdot 10-(-6)^2=80-36=44. $$

Так как $\Delta > 0$ и $\frac{\partial^2 z}{\partial x^2} > 0$, то согласно точка $(2;-3)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $(2;-3)$:

$$ z_{min}=z(2;-3)=4\cdot 2^2-6\cdot 2 \cdot (-3)-34\cdot 2+5\cdot (-3)^2+42\cdot (-3)+7=-90. $$

Ответ : $(2;-3)$ - точка минимума; $z_{min}=-90$.

Пример №2

Исследовать на экстремум функцию $z=x^3+3xy^2-15x-12y+1$.

Будем следовать указанному выше . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=3x^2+3y^2-15; \frac{\partial z}{\partial y}=6xy-12. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 3x^2+3y^2-15=0;\\ & 6xy-12=0. \end{aligned} \right. $$

Сократим первое уравнение на 3, а второе - на 6.

$$ \left \{ \begin{aligned} & x^2+y^2-5=0;\\ & xy-2=0. \end{aligned} \right. $$

Если $x=0$, то второе уравнение приведёт нас к противоречию: $0\cdot y-2=0$, $-2=0$. Отсюда вывод: $x\neq 0$. Тогда из второго уравнения имеем: $xy=2$, $y=\frac{2}{x}$. Подставляя $y=\frac{2}{x}$ в первое уравнение, будем иметь:

$$ x^2+\left(\frac{2}{x} \right)^2-5=0;\\ x^2+\frac{4}{x^2}-5=0;\\ x^4-5x^2+4=0. $$

Получили биквадратное уравнение. Делаем замену $t=x^2$ (при этом имеем в виду, что $t > 0$):

$$ t^2-5t+4=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 1 \cdot 4=9;\\ & t_1=\frac{-(-5)-\sqrt{9}}{2}=\frac{5-3}{2}=1;\\ & t_2=\frac{-(-5)+\sqrt{9}}{2}=\frac{5+3}{2}=4.\end{aligned} $$

Если $t=1$, то $x^2=1$. Отсюда имеем два значения $x$: $x_1=1$, $x_2=-1$. Если $t=4$, то $x^2=4$, т.е. $x_3=2$, $x_4=-2$. Вспоминая, что $y=\frac{2}{x}$, получим:

\begin{aligned} & y_1=\frac{2}{x_1}=\frac{2}{1}=2;\\ & y_2=\frac{2}{x_2}=\frac{2}{-1}=-2;\\ & y_3=\frac{2}{x_3}=\frac{2}{2}=1;\\ & y_4=\frac{2}{x_4}=\frac{2}{-2}=-1. \end{aligned}

Итак, у нас есть четыре стационарные точки: $M_1(1;2)$, $M_2(-1;-2)$, $M_3(2;1)$, $M_4(-2;-1)$. На этом первый шаг алгоритма закончен.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=6x; \frac{\partial^2 z}{\partial y^2}=6x; \frac{\partial^2 z}{\partial x \partial y}=6y. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= 6x\cdot 6x-(6y)^2=36x^2-36y^2=36(x^2-y^2). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(1;2)$. В этой точке имеем: $\Delta(M_1)=36(1^2-2^2)=-108$. Так как $\Delta(M_1) < 0$, то согласно в точке $M_1$ экстремума нет.

Исследуем точку $M_2(-1;-2)$. В этой точке имеем: $\Delta(M_2)=36((-1)^2-(-2)^2)=-108$. Так как $\Delta(M_2) < 0$, то согласно в точке $M_2$ экстремума нет.

Исследуем точку $M_3(2;1)$. В этой точке получим:

$$ \Delta(M_3)=36(2^2-1^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=6\cdot 2=12. $$

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(2;1)$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(2;1)=2^3+3\cdot 2\cdot 1^2-15\cdot 2-12\cdot 1+1=-27. $$

Осталось исследовать точку $M_4(-2;-1)$. В этой точке получим:

$$ \Delta(M_4)=36((-2)^2-(-1)^2)=108;\;\; \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4}=6\cdot (-2)=-12. $$

Так как $\Delta(M_4) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_4} < 0$, то согласно $M_4(-2;-1)$ есть точкой максимума функции $z$. Максимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_4$:

$$ z_{max}=z(-2;-1)=(-2)^3+3\cdot (-2)\cdot (-1)^2-15\cdot (-2)-12\cdot (-1)+1=29. $$

Исследование на экстремум завершено. Осталось лишь записать ответ.

Ответ :

  • $(2;1)$ - точка минимума, $z_{min}=-27$;
  • $(-2;-1)$ - точка максимума, $z_{max}=29$.

Примечание

Вычислять значение $\Delta$ в общем случае нет необходимости, потому что нас интересует лишь знак, а не конкретное значение данного параметра. Например, для рассмотренного выше примера №2 в точке $M_3(2;1)$ имеем $\Delta=36\cdot(2^2-1^2)$. Здесь очевидно, что $\Delta > 0$ (так как оба сомножителя $36$ и $(2^2-1^2)$ положительны) и можно не находить конкретное значение $\Delta$. Правда, для типовых расчётов это замечание бесполезно, - там требуют довести вычисления до числа:)

Пример №3

Исследовать на экстремум функцию $z=x^4+y^4-2x^2+4xy-2y^2+3$.

Будем следовать . Для начала найдём частные производные первого порядка:

$$ \frac{\partial z}{\partial x}=4x^3-4x+4y; \frac{\partial z}{\partial y}=4y^3+4x-4y. $$

Составим систему уравнений $ \left \{ \begin{aligned} & \frac{\partial z}{\partial x}=0;\\ & \frac{\partial z}{\partial y}=0. \end{aligned} \right.$:

$$ \left \{ \begin{aligned} & 4x^3-4x+4y=0;\\ & 4y^3+4x-4y=0. \end{aligned} \right. $$

Сократим оба уравнения на $4$:

$$ \left \{ \begin{aligned} & x^3-x+y=0;\\ & y^3+x-y=0. \end{aligned} \right. $$

Добавим к второму уравнению первое и выразим $y$ через $x$:

$$ y^3+x-y+(x^3-x+y)=0;\\ y^3+x^3=0; y^3=-x^3; y=-x. $$

Подставляя $y=-x$ в первое уравнение системы, будем иметь:

$$ x^3-x-x=0;\\ x^3-2x=0;\\ x(x^2-2)=0. $$

Из полученного уравнения имеем: $x=0$ или $x^2-2=0$. Из уравнения $x^2-2=0$ следует, что $x=-\sqrt{2}$ или $x=\sqrt{2}$. Итак, найдены три значения $x$, а именно: $x_1=0$, $x_2=-\sqrt{2}$, $x_3=\sqrt{2}$. Так как $y=-x$, то $y_1=-x_1=0$, $y_2=-x_2=\sqrt{2}$, $y_3=-x_3=-\sqrt{2}$.

Первый шаг решения окончен. Мы получили три стационарные точки: $M_1(0;0)$, $M_2(-\sqrt{2},\sqrt{2})$, $M_3(\sqrt{2},-\sqrt{2})$.

Теперь приступим ко алгоритма. Найдём частные производные второго порядка:

$$ \frac{\partial^2 z}{\partial x^2}=12x^2-4; \frac{\partial^2 z}{\partial y^2}=12y^2-4; \frac{\partial^2 z}{\partial x \partial y}=4. $$

Найдём $\Delta$:

$$ \Delta=\frac{\partial^2z}{\partial x^2}\cdot \frac{\partial^2z}{\partial y^2}-\left(\frac{\partial^2z}{\partial x\partial y} \right)^2= (12x^2-4)(12y^2-4)-4^2=\\ =4(3x^2-1)\cdot 4(3y^2-1)-16=16(3x^2-1)(3y^2-1)-16=16\cdot((3x^2-1)(3y^2-1)-1). $$

Теперь будем вычислять значение $\Delta$ в каждой из найденных ранее стационарных точек. Начнём с точки $M_1(0;0)$. В этой точке имеем: $\Delta(M_1)=16\cdot((3\cdot 0^2-1)(3\cdot 0^2-1)-1)=16\cdot 0=0$. Так как $\Delta(M_1) = 0$, то согласно требуется дополнительное исследование, ибо ничего определённого про наличие экстремума в рассматриваемой точке сказать нельзя. Оставим покамест эту точку в покое и перейдём в иным точкам.

Исследуем точку $M_2(-\sqrt{2},\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_2)=16\cdot((3\cdot (-\sqrt{2})^2-1)(3\cdot (\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2}=12\cdot (-\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_2) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_2} > 0$, то согласно $M_2(-\sqrt{2},\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_2$:

$$ z_{min}=z(-\sqrt{2},\sqrt{2})=(-\sqrt{2})^4+(\sqrt{2})^4-2(-\sqrt{2})^2+4\cdot (-\sqrt{2})\sqrt{2}-2(\sqrt{2})^2+3=-5. $$

Аналогично предыдущему пункту исследуем точку $M_3(\sqrt{2},-\sqrt{2})$. В этой точке получим:

\begin{aligned} & \Delta(M_3)=16\cdot((3\cdot (\sqrt{2})^2-1)(3\cdot (-\sqrt{2})^2-1)-1)=16\cdot 24=384;\\ & \left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3}=12\cdot (\sqrt{2})^2-4=24-4=20. \end{aligned}

Так как $\Delta(M_3) > 0$ и $\left.\frac{\partial^2 z}{\partial x^2}\right|_{M_3} > 0$, то согласно $M_3(\sqrt{2},-\sqrt{2})$ есть точкой минимума функции $z$. Минимум функции $z$ найдём, подставив в заданную функцию координаты точки $M_3$:

$$ z_{min}=z(\sqrt{2},-\sqrt{2})=(\sqrt{2})^4+(-\sqrt{2})^4-2(\sqrt{2})^2+4\cdot \sqrt{2}(-\sqrt{2})-2(-\sqrt{2})^2+3=-5. $$

Настал черёд вернуться к точке $M_1(0;0)$, в которой $\Delta(M_1) = 0$. Согласно требуется дополнительное исследование. Под этой уклончивой фразой подразумевается "делайте, что хотите" :). Общего способа разрешения таких ситуаций нет, - и это понятно. Если бы такой способ был, то он давно бы вошёл во все учебники. А покамест приходится искать особый подход к каждой точке, в которой $\Delta = 0$. Ну что же, поисследуем поведение функции в окрестности точки $M_1(0;0)$. Сразу отметим, что $z(M_1)=z(0;0)=3$. Предположим, что $M_1(0;0)$ - точка минимума. Тогда для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) > z(M_1) $, т.е. $z(M) > 3$. А вдруг любая окрестность содержит точки, в которых $z(M) < 3$? Тогда в точке $M_1$ уж точно не будет минимума.

Рассмотрим точки, у которых $y=0$, т.е. точки вида $(x,0)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,0)=x^4+0^4-2x^2+4x\cdot 0-2\cdot 0^2+3=x^4-2x^2+3=x^2(x^2-2)+3. $$

В всех достаточно малых окрестностях $M_1(0;0)$ имеем $x^2-2 < 0$, посему $x^2(x^2-2) < 0$, откуда следует $x^2(x^2-2)+3 < 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z < 3$, посему точка $M_1(0;0)$ не может быть точкой минимума.

Но, может быть, точка $M_1(0;0)$ - точка максимума? Если это так, то для любой точки $M$ из некоторой окрестности точки $M_1(0;0)$ получим $z(M) < z(M_1) $, т.е. $z(M) < 3$. А вдруг любая окрестность содержит точки, в которых $z(M) > 3$? Тогда в точке $M_1$ точно не будет максимума.

Рассмотрим точки, у которых $y=x$, т.е. точки вида $(x,x)$. В этих точках функция $z$ будет принимать такие значения:

$$ z(x,x)=x^4+x^4-2x^2+4x\cdot x-2\cdot x^2+3=2x^4+3. $$

Так как в любой окрестности точки $M_1(0;0)$ имеем $2x^4 > 0$, то $2x^4+3 > 3$. Вывод: любая окрестность точки $M_1(0;0)$ содержит точки, в которых $z > 3$, посему точка $M_1(0;0)$ не может быть точкой максимума.

Точка $M_1(0;0)$ не является ни точкой максимума, ни точкой минимума. Вывод: $M_1$ вообще не является точкой экстремума.

Ответ : $(-\sqrt{2},\sqrt{2})$, $(\sqrt{2},-\sqrt{2})$ - точки минимума функции $z$. В обеих точках $z_{min}=-5$.

Найдите наибольшее значение функции y=(7x^2-56x+56)e^x на отрезке [-3; 2].

Показать решение

Решение

Найдём производную исходной функции по формуле производной произведения y"= (7x^2-56x+56)"e^x\,+ (7x^2-56x+56)\left(e^x\right)"= (14x-56)e^x+(7x^2-56x+56)e^x= (7x^2-42x)e^x= 7x(x-6)e^x. Вычислим нули производной: y"=0;

7x(x-6)e^x=0,

x_1=0, x_2=6.

Расставим знаки производной и определим промежутки монотонности исходной функции на заданном отрезке.

Из рисунка видно, что на отрезке [-3; 0] исходная функция возрастает, а на отрезке — убывает. Таким образом, наибольшее значение на отрезке [-3; 2] достигается при x=0 и равно y(0)= 7\cdot 0^2-56\cdot 0+56=56.

Ответ

Условие

Найдите наибольшее значение функции y=12x-12tg x-18 на отрезке \left.

Показать решение

Решение

y"= (12x)"-12(tg x)"-(18)"= 12-\frac{12}{\cos ^2x}= \frac{12\cos ^2x-12}{\cos ^2x}\leqslant0. Значит, исходная функция является невозрастающей на рассматриваемом промежутке и принимает наибольшее значение на левом конце отрезка, то есть при x=0. Наибольшее значение равно y(0)= 12\cdot 0-12 tg (0)-18= -18.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите точку минимума функции y=(x+8)^2e^{x+52}.

Показать решение

Решение

Будем находить точку минимума функции с помощью производной. Найдём производную заданной функции, пользуясь формулами производной произведения, производной x^\alpha и e^x:

y"(x)= \left((x+8)^2\right)"e^{x+52}+(x+8)^2\left(e^{x+52}\right)"= 2(x+8)e^{x+52}+(x+8)^2e^{x+52}= (x+8)e^{x+52}(2+x+8)= (x+8)(x+10)e^{x+52}.

Расставим знаки производной и определим промежутки монотонности исходной функции. e^{x+52}>0 при любом x . y"=0 при x=-8, x=-10.

Из рисунка видно, что функция y=(x+8)^2e^{x+52} имеет единственную точку минимума x=-8.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите точку максимума функции y=8x-\frac23x^\tfrac32-106.

Показать решение

Решение

ОДЗ: x \geqslant 0. Найдём производную исходной функции:

y"=8-\frac23\cdot\frac32x^\tfrac12=8-\sqrt x.

Вычислим нули производной:

8-\sqrt x=0;

\sqrt x=8;

x=64.

Расставим знаки производной и определим промежутки монотонности исходной функции.

Из рисунка видно, что точка x=64 является единственной точкой максимума заданной функции.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите наименьшее значение функции y=5x^2-12x+2\ln x+37 на отрезке \left[\frac35; \frac75\right].

Показать решение

Решение

ОДЗ: x>0.

Найдём производную исходной функции:

y"(x)= 10x-12+\frac{2}{x}= \frac{10x^2-12x+2}{x}.

Определим нули производной: y"(x)=0;

\frac{10x^2-12x+2}{x}=0,

5x^2-6x+1=0,

x_{1,2}= \frac{3\pm\sqrt{3^2-5\cdot1}}{5}= \frac{3\pm2}{5},

x_1=\frac15\notin\left[\frac35; \frac75\right],

x_2=1\in\left[\frac35; \frac75\right].

Расставим знаки производной и определим промежутки монотонности исходной функции на рассматриваемом промежутке.

Из рисунка видно, что на отрезке \left[\frac35; 1\right] исходная функция убывает, а на отрезке \left возрастает. Таким образом, наименьшее значение на отрезке \left[\frac35; \frac75\right] достигается при x=1 и равно y(1)= 5\cdot 1^2-12\cdot 1+2 \ln 1+37= 30.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Найдите наибольшее значение функции y=(x+4)^2(x+1)+19 на отрезке [-5; -3].

Показать решение

Решение

Найдём производную исходной функции, используя формулу производной произведения.

Урок на тему: "Нахождение точек экстремумов функций. Примеры"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение для 7-10 классов
Программная среда "1С: Математический конструктор 6.1"

Что будем изучать:
1. Введение.
2. Точки минимума и максимума.

4. Как вычислять экстремумы?
5. Примеры.

Введение в экстремумы функций

Ребята, давайте посмотрим на график некоторой функции:

Заметит, что поведение нашей функции y=f (x) во многом определяется двумя точками x1 и x2. Давайте внимательно посмотрим на график функции в этих точках и около них. До точки x2 функция возрастает, в точке x2 происходит перегиб, и сразу после этой точки функция убывает до точки x1. В точке x1 функция опять перегибается, и после этого - опять возрастает. Точки x1 и x2 пока так и будем называть точками перегиба. Давайте проведем касательные в этих точках:


Касательные в наших точках параллельны оси абсцисс, а значит, угловой коэффициент касательной равен нулю. Это значит, что и производная нашей функции в этих точках равна нулю.

Посмотрим на график вот такой функции:


Касательные в точках x2 и x1 провести невозможно. Значит, производной в этих точках не существует. Теперь посмотрим опять на наши точки на двух графиках. Точка x2 - это точка, в которой функция достигает наибольшего значения в некоторой области (рядом с точкой x2). Точка x1 - это точка, в которой функция достигает своего наименьшего значения в некоторой области (рядом с точкой x1).

Точки минимума и максимума

Определение: Точку x= x0 называют точкой минимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≥ f(x0).

Определение: Точку x=x0 называют точкой максимума функции y=f(x), если существует окрестность точки x0, в которой выполняется неравенство: f(x) ≤ f(x0).

Ребята, а что такое окрестность?

Определение: Окрестность точки - множество точек, содержащее нашу точку, и близкие к ней.

Окрестность мы можем задавать сами. Например, для точки x=2, мы можем определить окрестность в виде точек 1 и 3.

Вернемся к нашим графикам, посмотрим на точку x2, она больше всех других точек из некоторой окрестности, тогда по определению - это точка максимума. Теперь посмотрим на точку x1, она меньше всех других точек из некоторой окрестности, тогда по определению - это точка минимума.

Ребята, давайте введем обозначения:

Y min - точка минимума,
y max - точка максимума.

Важно! Ребята, не путайте точки максимума и минимума с наименьшим и наибольшим значение функции. Наименьшее и наибольшее значения ищутся на всей области определения заданной функции, а точки минимума и максимума в некоторой окрестности.

Экстремумы функции

Для точек минимума и максимума есть общей термин – точки экстремума.

Экстремум (лат. extremum – крайний) – максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума.

Соответственно, если достигается минимум – точка экстремума называется точкой минимума, а если максимум – точкой максимума.

Как же искать экстремумы функции?

Давайте вернемся к нашим графикам. В наших точках производная либо обращается в нуль (на первом графике), либо не существует (на втором графике).

Тогда можно сделать важное утверждение: Если функция y= f(x) имеет экстремум в точке x=x0, то в этой точке производная функции либо равна нулю, либо не существует.

Точки, в которых производная равна нулю называются стационарными.

Точки, в которых производной функции не существует, называются критическими.

Как вычислять экстремумы?

Ребята, давайте опять вернемся к первому графику функции:


Анализируя этот график, мы говорили: до точки x2 функция возрастает, в точке x2 происходит перегиб, и после этой точки функция убывает до точки x1. В точке x1 у функции опять перегибается, и после этого функция опять возрастает.

На основании таких рассуждений, можно сделать вывод, что функция в точках экстремума меняет характер монотонности, а значит и производная функция меняет знак. Вспомним: если функция убывает, то производная меньше либо равно нулю, а если функция возрастает, то производная больше либо равна нулю.

Обобщим полученные знания утверждением:

Теорема: Достаточное условие экстремума: пусть функция y=f(x) непрерывна на некотором промежутке Х и имеет внутри промежутка стационарную или критическую точку x= x0. Тогда:

  • Если у этой точки существует такая окрестность, в которой при x x0 выполняется f’(x)>0, то точка x0 – точка минимума функции y= f(x).
  • Если у этой точки существует такая окрестность, в которой при x 0, а при x> x0 выполняется f’(x) Если у этой точки существует такая окрестность, в которой и слева и справа от точки x0 знаки производной одинаковы, то в точке x0 экстремума нет.

Для решении задач запомните такие правила: Если знаки производных определены то:


Алгоритм исследования непрерывной функции y= f(x) на монотонность и экстремумы:

  • Найти производную y’.
  • Найти стационарные(производная равна нулю) и критические точки (производная не существует).
  • Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
  • По указанным выше утверждениям сделать вывод о характере точек экстремума.

Примеры нахождения точки экстремумов

1) Найти точки экстремума функции и определить их характер: y= 7+ 12*x - x 3

Решение: Наша функция непрерывна, тогда воспользуемся нашим алгоритмом:
а) y"= 12 - 3x 2 ,
б) y"= 0, при x= ±2,

Точка x= -2 - точка минимума функции, точка x= 2 - точка максимума функции.
Ответ: x= -2 - точка минимума функции, x= 2 - точка максимума функции.

2) Найти точки экстремума функции и определить их характер.

Решение: Наша функция непрерывна. Воспользуемся нашим алгоритмом:
а) б) в точке x= 2 производная не существует, т.к. на нуль делить нельзя, Область определения функции: , в этой точки экстремума нет, т.к. окрестность точки не определена. Найдем значения, в которой производная равна нулю: в) Отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= 3 - точка минимума функции.
Ответ: x= 3 - точка минимума функции.

3) Найти точки экстремума функции y= x - 2cos(x) и определить их характер, при -π ≤ x ≤ π.

Решение: Наша функция непрерывна, воспользуемся нашим алгоритмом:
а) y"= 1 + 2sin(x),
б) найдем значения в которой производная равна нулю: 1 + 2sin(x)= 0, sin(x)= -1/2,
т.к. -π ≤ x ≤ π, то: x= -π/6, -5π/6,
в) отметим стационарные точки на числовой прямой и определим знаки производной: г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -5π/6 - точка максимума функции.
Точка x= -π/6 - точка минимума функции.
Ответ: x= -5π/6 - точка максимума функции, x= -π/6 - точка минимума функции.

4) Найти точки экстремума функции и определить их характер:

Решение: Наша функция имеет разрыв только в одной точке x= 0. Воспользуемся алгоритмом:
а)
б) найдем значения в которой производная равна нулю: y"= 0 при x= ±2,
в) отметим стационарные точки на числовой прямой и определим знаки производной:
г) посмотрим на наш рисунок, где изображены правила определения экстремумов.
Точка x= -2 точка минимума функции.
Точка x= 2 - точка минимума функции.
В точке x= 0 функция не существует.
Ответ: x= ±2 - точки минимума функции.

Задачи для самостоятельного решения

а) Найти точки экстремума функции и определить их характер: y= 5x 3 - 15x - 5.
б) Найти точки экстремума функции и определить их характер:
в) Найти точки экстремума функции и определить их характер: y= 2sin(x) - x при π ≤ x ≤ 3π.
г) Найти точки экстремума функции и определить их характер: