«Умный дом» на Arduino для бытовки. Ардуино для проекта «Умный дом»


В данном проекте я покажу, как построить умный дом. Он может контролировать температуру снаружи и внутри помещения, фиксировать открыто или закрыто окно, показывать, идет ли дождь, а также подавать тревожный сигнал, когда сработает датчик движения PIR. Я создал приложение на ОС Android для отображения всех данных (данные можно также просматривать через браузер). Вы сможете видеть температуру в вашем доме и другую информацию с любой точки мира! Приложение переведено на английский и польский язык. Я создал данное устройство, поскольку хотел иметь свой собственный умный дом, которым можно управлять. Вы также сможете построить умный дом из компонентов, рекомендованных ниже. Тогда приступим.

Объяснение сокращений для начинающих:

GND - земля
VCC - питание
PIR – датчик движения

Шаг 1: Компоненты

Стоимость всех компонентов не превышает $90

  • Датчик температуры DS18B20 x 2 штуки
  • Язычковый переключатель
  • Резистор 4.7 кОм
  • Кабель, витая пара
  • ethernet кабель
  • инструменты (паяльник, отвертка)

Шаг 2: Соединения

Схема соединений показана выше.

Шаг 3: Программный код

Сначала вам необходимо загрузить, разархивировать и импортировать данную библиотеку в среду разработки Arduino IDE. Далее потребуется загрузить данную программу в Arduino. В комментариях объясняется программный код.

Шаг 4: Принцип работы

Если вы нажмете на кнопке refresh (обновить) в вашем приложении или в браузере, то Arduino отправит данные в смартфон/браузер. Приложение получает программный код с каждой страницы (/tempin, /tempout, /rain, /window, /alarm) и отображает его на вашем смартфоне.

Шаг 5: Приложения для Android.

Для установки приложения на вашем смартфоне под управлением ОС Android вам необходимо выполнить следующее (это видно на картинках выше):

1. Сначала загрузите файл smartHome.apk
2. Отправьте файл apk на ваш телефон
3. Откройте файловый менеджер и разместите файл smarthHome.apk
4. Щелкните на нем и нажмите установить (вам необходимо установить галочку, которая разрешает устанавливать приложения вне маркета google play)
5. После установки вам необходимо активировать приложение

Шаг 6: Конфигурирование приложения

Я кратко объясню, как работает приложение. Оно отображает все данные из вашего дома. Вы можете нажать на иконку настроек для редактирования вашего IP адреса, и включать и выключать тревожную сигнализацию. Когда вы включаете сигнализацию, то приложение получает данные от активного датчика движения PIR. Если датчик определяет постороннее движение в доме, он посылает уведомление. Приложение получает данные от датчика каждую минуту. В поле IP введите ваш IP-адрес.

Шаг 7: Браузер

Введите в адресной строке браузера ваш ip адрес / all. При этом вы увидите все данные и сможете включать и выключать свет.

Для этих функций вы также можете использовать приложение на Android.

Шаг 8: Переадресация портов

Вам нужно открыть порт на вашем роутере. Войдите в конфигурацию роутера, установите адрес arduino ip и откройте порт 80. Процедура показана на картинке выше.

Жизнь без интернета, бытовой техники, смартфонов представить сложно. Многие богатые люди в этот список добавили бы еще и систему «Умный дом». В статье разберем, что это, как ее установить и как пользоваться.

Что за система?

Как уже стало понятно, систему «Умный дом» приобрести сможет не каждый. Но если иметь необходимые навыки, можно создать ее самостоятельно через специальное приложение. Соответственно, далее поговорим о системе «Умный дом» на попробуем создать ее для своего жилого помещения.

Что по факту представляет собой данная система? Это набор датчиков и контроллеров. Они существуют различных видов, поэтому могут реагировать как на движения, так и на тепловую энергию. Такие устройства способны контролировать работу дома: коммуникации, систему безопасности и так далее. Существуют и более «разумные» сооружения, которые могут самостоятельно включать отопление, запускать различные процессы и так далее. Каждый человек хочет прийти домой, где его будет ждать горячая ванная, разогретый ужин. «Умный» дом - самое лучшее решение для тех, кто живет один. Если нет средств на такую систему, то ее можно сделать самостоятельно.

Как работают датчики?

Датчики способны считывать информацию и данные, затем их обрабатывать и передавать соответствующую команду. Они способны реагировать на температуру, резкие движения и звук.

Простейшие и доступные датчики отслеживания часто используют на лестничных площадках - всем знакомо автоматическое включение света. Помимо нередко применяются в системах пожарной безопасности. Как только резко начинает повышаться температура, сразу же срабатывает сигнализация.

Перед тем как начать работать с системой в собственном здании, нужно создать проект, который позволит правильно распределить датчики и все возможные контроллеры. Важно отметить, что для этого нужно иметь навыки в области программирования и электроники. Если таковые отсутствуют, то следует предпочитать устройства простого плана, то есть созданные для потребителя-новичка. Именно такими являются системы «Ардуино». Производитель поставляет абсолютно простые в установке и эксплуатации приспособления.

Почему «Ардуино»?

Этот вопрос вполне логичный и понятный. Выше уже писалось о том, что компания выпускает простые для понимания системы, но это не единственная причина, по которой следует выбрать Arduino. Наборы для «Умного дома» приобрести можно в магазине или же заказать на сайте. Установку провести разрешается самостоятельно, но никто не откажет в предоставлении квалифицированного мастера. Он выполнит все работы без ошибок и не будет пренебрегать красивым оформлением (например, спрячет провода, а не «вывалит» их на всеобщее рассмотрение). Но большая часть клиентов все же решает проводить все работы самостоятельно. Почему? Это намного проще и дешевле. Все фирмы, которые выпускают подобные проекты, здорово накручивают цену и на словах завышают качество многих моделей. Описываемая компания таким не занимается. Отзывы в Интернете это подтверждают на все 100 %.

Стоимость за комплектующие и установку системы Arduino (проекты «Умного дома» очень популярны) намного дешевле, чем у других производителей. Даже сама компания предлагает всю установку проводить самостоятельно, так как в случае поломки владелец должен разбираться в схемах и проекте в целом. Также, зная досконально систему, можно с легкостью и без труда подстроить ее под себя.

На платформе Arduino имеется куча библиотек с поэтому найти себе подходящую программу не составит труда.

Наборы

В продаже имеются наборы «Умный дом». В них покупатель может найти все необходимые составляющие для создания автоматизированных систем в собственном доме: материнскую и макетную платы, электронные детали и правила по использованию. Этот набор научит человека правильно подключать диоды, включать устройства по хлопкам и управлять девайсами дистанционно.

«Дерзай» создан для детей от 14 лет. В комплекте поставляется инструкция. С помощью набора можно создать пять готовых проектов: секундомер, ночник и так далее.

Arduino Starter Kit - базовый набор, с которого все владельцы советуют начать ознакомление. В нем поставляется плата Arduino UNO, датчики, экран, резисторы и так далее. Стоит он около 80 евро.

«Матрешка» предназначена для детей от 10 лет. Она продается в нескольких версиях, которые между собой отличаются количеством и типом деталей, соответственно, с помощью каждого из них можно осуществить совершенно отличные друг от друга эксперименты. Поставляется плата Arduino UNO Rev3, произведенная в Италии. С помощью этого набора можно сделать ночной светильник, миксер, тестер для батареек и так далее.

«Амперка», как правило, приобретается для учебных учреждений. Она производится для детей от 12 лет. По окончании занятий дети смогут создать робота, который движется по прямой линии. Контроллер поставляется модели Arduino Uno.

Наборы «Дерзай» («Умный дом») на Arduino на данный момент наиболее популярны.

Платформы

Стандартная платформа - Arduino Uno. «Умный дом» часто работает на ее базе. Она распространена больше всего, так как стоит недорого. Используя ее, можно с легкостью управлять микроконтроллерной техникой. Если человек не знаком с платами от Arduino, то все владельцы советуют ему начать знакомство именно с этой.

Arduino Leonardo стоит немного дешевле вышеописанного варианта. Дело в том, что, в отличие от Uno, его можно использовать как USB-устройство. Например, благодаря этой плате можно управлять мышью и клавиатурой.

Почему чаще всего создается «Умный дом» на Arduino Mega2560? Она лишь немного внешне отличается от Uno, но имеет больший функционал. Используют ее зачастую для работы одновременно с большим количеством устройств. Соответственно с ней намного проще работать, когда речь идет о масштабных проектах. В целом если планируется создание «Умного дома», Arduino Mega - наиболее подходящий вариант.

Преимущества системы

Компания «Ардуино» пользуется большим спросом у людей, которые плохо разбираются в программировании. Все предоставляемые системы имеют понятный интерфейс. Однако этим преимущества не ограничиваются.

Производитель предусмотрел возможность создавать собственные программы - исходный код открыт. Используемый язык максимально прост в освоении. Если есть необходимость, можно переносить программы при помощи USB-кабеля. Наборы «Умного дома» довольно интересны.

То есть при знании языка программирования можно приобрести только один вариант программного обеспечения и подстроить его максимально под себя.

Если необходимы дополнительные утилиты, то их можно скачать бесплатно с официального сайта. Системой разрешается управлять с компьютера и телефона при помощи программы.

Принципы работы

Датчики передают информацию на компьютер или телефон при помощи технологии беспроводной передачи данных. Специальная утилита обрабатывает данные - выполняется команда. Имеется главный датчик (центральный), который можно либо приобрести, либо сделать самостоятельно. На платах Arduino (проекты «Умного дома разработаны на них) присутствуют стандартные разъемы. Благодаря этому можно с легкостью подобрать все комплектующие.

Что необходимо для сборки?

Если появилось желание собрать проект самостоятельно, то необходимо собрать некоторые устройства и взять приборы. Какие?

  • Датчики и контроллеры.
  • Интернет-модуль.
  • Витую пару (кабель).
  • Переключатель.
  • Резистор.
  • Провод для интернет-модуля.
  • Реле.

Из принадлежностей понадобятся паяльник, отвертки и так далее.

Наборы от компании Arduino нужно приобретать в проверенных магазинах. Почему? Все необходимые приборы нужны для работы с электричеством, именно поэтому подделки использовать опасно. Все необходимые утилиты можно скачать из Интернета. Поэтому довольно просто создать «Умный дом» своими руками на базе Arduino.

Датчики нужно выбирать, отталкиваясь от своих предпочтений: включение или отключение света, контроль температуры и так далее.

Процесс установки

Обратить внимание нужно на то, что «Умный дом» должен иметь лишь лампы светодиодного типа. Обычные варианты не смогут выдержать напряжения - либо лопнут, либо просто перегорят.

После того, как проект «Умный дом» на Arduino уже будет готов, нужно начать подключать контроллеры и датчики. Делают это, не отклоняясь от чертежа и схемы, которые были созданы ранее. Контакты должны быть изолированными.

Все работы можно представить поэтапно в виде алгоритма:

  • Установка кода.
  • Настройка приложения под компьютер или телефон.
  • Переадресация портов.
  • Тестирование датчиков и обеспечения.
  • Устранение неполадок, если таковые выявлены при проверке.
  • Качать программное обеспечение лучше из проверенного источника архивом. После того как последний будет открыт и все утилиты установлены, следует перезапустить приложение или перезагрузить устройство.

    Программное обеспечение «Умного дома» на Arduino будет отображать состояние датчиков и информацию с них. Если есть необходимость, всегда можно поменять сетевой адрес, выключить сигнализацию.

    Работа с роутером

    На роутере нужно открыть порт. Что следует сделать, чтобы выполнить это действие? Открыть меню конфигураций, написать сетевой адрес Arduino и активировать порт.

    Сразу же после этого можно установить имя домену. Теперь ничего не мешает владельцу приступить к тестированию системы, которая была создана собственными руками.

    Дистанционное управление

    Благодаря серверу компании можно связать всю технику между собой. Разрешается использовать облачные сервисы, которые позволяет визуализировать процессы. Благодаря Интернету можно полностью управлять своим домом. Включить/отключить бойлер или отопление можно, находясь на другом конце города.

    Имеется еще один способ, который поможет управлять домом, - СМС-сообщения. Не всегда бывает так, что имеется интернет-соединение, поэтому такой способ довольно актуален.

    Итоги

    Нужно обратить внимание на то, что «Умный дом» на базе Arduino не может работать с открытым сетевым адресом, так как иначе его будет легко взломать. Все здания, которые работают на «умной» системе, могут помогать экономить электроэнергию каждому человеку, а также правильно использовать все ресурсы. Главное, правильно подобрать все компоненты без каких-либо подделок.

    Также немаловажным является то, что «Ардуино» имеет множество библиотек, которые включают в себя тысячи программных кодов. Именно поэтому создать систему «Умный дом» на Arduino, пользуясь лишь Интернетом, будет более чем легко.

    К настоящему времени системы типа «умный дом» из удивительной экзотики, доступной только самым состоятельным лицам, превратились в обыденность, к которой может приобщиться любой желающий. Выбирать есть из чего: выпуск подобных аппаратно-программных комплексов освоили очень многие разработчики. К числу наиболее известных принадлежит компания Arduino, с продукцией которой мы сейчас и познакомимся.

    Что такое «умный дом»

    У этого термина есть более понятный аналог - «домашняя автоматизация». Суть подобных решений состоит в том, чтобы обеспечить автоматическое выполнение различных процессов, происходящих в жилище, офисе или на специализированных объектах. Простейший пример - автоматическое включение освещения в тот момент, когда кто-то из жильцов входит в комнату.

    Система «умный дом» от Arduino представляет собой комплект оборудования для управления работой различных устройств с помощью мобильного телефона на базе ОС Android

    В любой системе «умный дом» можно выделить следующие составляющие:

  • Сенсорная часть. Это набор устройств, основная часть которых представлена всевозможными датчиками, позволяющими системе регистрировать события различного характера. Примерами могут служить датчики температуры и движения. Прочие устройства сенсорной части служат для передачи системе команд пользователя. Это выносные кнопки и пульты дистанционного управления с приёмниками.

    Одним из наиболее часто импользуемых элементов «умного дома» является датчик движения

  • Исполнительная часть. Это устройства, которыми система может управлять, реагируя таким образом на то или иное событие в соответствии с заданным пользователем сценарием. Прежде всего, это реле, посредством которых контроллер «умного дома» может подавать питание на любой электрический прибор, то есть включать и выключать его. Например, по хлопку в ладони (система «услышит» его при помощи микрофона) можно настроить включение реле, подающего питание на вентилятор. Обратите внимание: в этом примере вентилятор может быть любым. Но можно применить и прибор, специально выпущенный для работы в составе той или иной системы. Например, компания Arduino выпускает для своих систем электромоторчики, при помощи которых можно, допустим, закрывать или открывать форточку, а компания Xiaomi (китайский производитель подобных систем) - устройства управления воздухоочистителем. Такой прибор полностью контролируется системой, то есть она может не только включить его, но и изменить настройки.

    Электромоторчик является исполнительным устройством, которое включается по сигналу контроллера системы и приводит в движение подключённый к нему механизм

  • Процессор. Может также называться контроллером. Это «мозг» системы, который координирует и согласовывает работу всех её составляющих.

    Плата процессора (или контроллера) управляет исполнительными устройствами на основе встроенной программы и данных, полученных от сенсоров

  • Программное обеспечение. Это набор инструкций, которыми руководствуется процессор. В системах некоторых производителей, в том числе и от Arduino, пользователь может написать программу самостоятельно, в других - используются готовые решения, в которых пользователю доступны лишь типовые сценарии.
  • Современные системы «умный дом» делятся на несколько разновидностей:

  • Оснащённые собственным контроллером.
  • Использующие в этом качестве процессор пользовательского компьютера (планшета, смартфона).
  • Обрабатывающие информацию при помощи удалённого сервера, принадлежащего компании-разработчику (облачный сервис).
  • Система может не только активировать тот или иной прибор, но и проинформировать пользователя о происшедшем событии путём отправки сообщения на телефон или каким-то иным способом. Таким образом, на неё можно возложить функции сигнализации, в том числе и противопожарной.

    Сценарии могут быть гораздо более сложными, чем мы описали в примерах. Например, можно научить систему включать бойлер и переводить снабжение горячей водой на него при отключении централизованной подачи, если при этом обнаруживается присутствие кого-то из жильцов в доме (помогают инфракрасные, ультразвуковые датчики, а также датчики движения).

    Знакомимся с Arduino

    Arduino - итальянская компания, занимающаяся разработкой и производством компонентов и программного обеспечения для простых систем «умный дом», предназначенных для неспециалистов. Примечательным является то, что этот разработчик сделал архитектуру созданных им систем полностью открытой, что дало возможность сторонним производителям разрабатывать новые и копировать уже существующие Arduino-совместимые устройства, а также выпускать ПО для них.

    Набор Arduino Uno содержит необходимые компоненты для реализации устройств, описанных в прилагаемой книге

    Такой подход обеспечил высокую популярность системам итальянской компании, но у него есть и недостаток: из-за того что за производство компонентов для Arduino-систем берутся, так сказать, все кому не лень, не всегда удаётся с первого раза приобрести качественное изделие. Зачастую приходится сталкиваться и с проблемой совместимости компонентов от разных производителей.

    Потенциальному пользователю следует знать, что с 2008 года существуют две компании, выпускающие продукцию под торговой маркой Arduino. У первой, которая начинала это направление, официальный сайт размещён по адресу www.arduino.cc ; у второй, новообразовавшейся - по адресу www.arduino.org. То, что было разработано до раскола, на обоих сайтах представлено одинаково, а вот ассортимент новой продукции уже отличается.

    ПО для систем «умный дом» Arduino имеет вид программной оболочки (называется IDE), в которой можно писать и компилировать программы. Распространяется бесплатно. Программы пишутся на языке C++.

    Версии программы Arduino IDE, представленные на указанных сайтах, тоже сильно отличаются, хотя имеют одинаковые не только название, но и номера версий. Из-за этого в них довольно легко запутаться. Отличие состоит в том, что каждое ПО поддерживает свои библиотеки и платы.

    «Железо» системы состоит из платы с микроконтроллером (процессорная плата) и установленных на ней плат расширения, которые в обиходе называют шилдами. Подключение шилд к процессорной плате позволяет добавлять к «умному дому» новые компоненты. Собранная система может быть как полностью автономной, так и работающей в связке с компьютером через стандартный проводной или беспроводной интерфейс.


    На процессорную плату можно устанавливать специальные расширения (шилды), которые увеличивают функциональность системы Преимущества системы Arduino

    Этот аппаратно-программный комплекс привлекает пользователя такими достоинствами:

    • возможность автономной работы, обусловленная наличием собственного контроллера;
    • широкие возможности по настройке работы системы (пользователь сам пишет программу, в которой могут быть предусмотрены сценарии любой сложности);
    • простота процесса загрузки программы в контроллер: программатор для этого не требуется, достаточно иметь USB-кабель (в микроконтроллере имеется прошивка загрузчика Bootloader);
    • доступная стоимость компонентов, обусловленная отсутствием у того или иного производителя монопольных прав (архитектура является открытой).

    Если загрузчик Bootloader стал работать со сбоями, либо в приобретённом микроконтроллере его не оказалось, пользователь имеет возможность прошить его самостоятельно. В программной оболочке IDE для этой цели предусмотрена поддержка ряда наиболее доступных и популярных программаторов. Кроме того, почти все процессорные платы Arduino имеют штыревой разъём, позволяющий осуществлять внутрисхемное программирование.

    В программе Arduino IDE, представленной на сайте arduino.cc, заложена возможность создания пользовательских аппаратно-программных платформ, в то время как в версии программы на arduino.org такая функция отсутствует.

    Какие решения предлагает Arduino

    Поскольку производством Arduino-совместимых датчиков и приборов занимается множество компаний, ассортимент этой продукции довольно широк. Вот что применяется чаще всего:

  • Сенсоры, отслеживающие климатические параметры:
  • Сенсоры, позволяющие определить пространственное положение объекта, на котором они закреплены:
  • Сенсоры, позволяющие регистрировать присутствие различных объектов:
  • Аварийные сенсоры:
  • Прочие устройства, например:
    • микрофон;
    • часы;
    • датчик открывания двери;
    • пульты дистанционного управления (радиочастотные и инфракрасные) с приёмниками;
    • удалённые кнопки.
  • Некоторые из этих устройств включены в состав базового набора Arduino Start, который у ряда производителей имеет название StarterKit.


    Стартовый набор системы Arduino включает в себя процессорную плату и несколько наиболее часто используемых устройств

    Исполнительная часть содержит огромный набор устройств, например:

    • электромоторы;
    • реле и различные переключатели;
    • диммеры (позволяют плавно менять интенсивность освещения);
    • доводчики дверей;
    • вентили и 3-ходовые клапаны с сервоприводами.

    Если вы планируете подключить через реле Arduino освещение, то правильнее использовать в качестве светильников светодиодные лампы. Лампы накаливания при подключении через такие реле быстро горят.

    Видео: начинаем работать с Arduino - управляем светодиодом через web-интерфейс Составление проекта на Arduino

    Процесс создания и настройки «умного дома» Arduino покажем на примере системы, в которую будут заложены следующие функции:

    • мониторинг температуры на улице и в помещении;
    • отслеживание состояния окна (открыто/закрыто);
    • мониторинг погодных условий (ясно/дождь);
    • генерация звукового сигнала при срабатывании датчика движения, если активирована функция сигнализации.

    Систему настроим таким образом, чтобы данные можно было просматривать посредством специального приложения, а также веб-браузера, то есть пользователь сможет сделать это из любого места, где есть доступ в интернет.

    Используемые сокращения:

  • «GND» - заземление.
  • «VCC» - питание.
  • «PIR» - датчик движения.
  • Необходимые компоненты для изготовления системы «умного дома»

    Для системы «умного дома» Arduino потребуется следующее:

    • микропроцессорная плата Arduino;
    • модуль Ethernet ENC28J60;
    • два температурных датчика марки DS18B20;
    • микрофон;
    • датчик дождя и снега;
    • датчик движения;
    • переключатель язычковый;
    • реле;
    • резистор сопротивлением 4,7 кОм;
    • кабель «витая пара»;
    • кабель Ethernet.

    Стоимость всех компонентов составляет примерно 90 долларов.


    Для изготовления системы с необходимыми нам функциями потребуется набор устройств стоимостью около 90 долларов Сборка «умного дома»: пошаговая инструкция

    Вот в какой последовательности необходимо действовать.

    Подключение исполнительных и сенсорных устройств

    Подключаем все компоненты согласно схеме.


    Сборка системы в основном сводится к подключению исполнительных устройств к соответствующим контактам процессорной платы Разработка программного кода

    Пользователь пишет всю программу целиком в оболочке Arduino IDE, для чего последняя оснащена текстовым редактором, менеджером проектов, компилятором, препроцессором и средствами для заливки программного кода в микропроцессор платы Arduino. Разработаны версии IDE для операционных систем Mac OS X, Windows и Linux. Язык программирования - С++ с некоторыми упрощениями. Пользовательские программы для Arduino принято называть скетчами (sketch) или набросками, программа IDE сохраняет их в файлы с расширением «.ino».

    Функцию main(), которая в С++ является обязательной, оболочка IDE создаёт автоматически, прописывая в ней ряд стандартных действий. Пользователь должен написать функции setup() (выполняется единоразово во время старта) и loop() (выполняется в бесконечном цикле). Обе эти функции для Arduino являются обязательными.

    Заголовочные файлы стандартных библиотек вставлять в программу не нужно - IDE делает это автоматически. К пользовательским библиотекам это не относится - они должны быть указаны.

    Добавление библиотек в «Менеджер проекта» IDE осуществляется несколько необычным способом. В виде исходных текстов, написанных на С++, они добавляются в особую папку в рабочем каталоге оболочки IDE. После этого названия этих библиотек появятся в соответствующем меню IDE. Те, что отметит пользователь, будут внесены в список компиляции.

    В IDE предусмотрен минимум настроек, а возможность настройки компилятора отсутствует вовсе. Таким образом, начинающий программист застрахован от ошибок.

    Вот пример самой простой программы, заставляющей каждые 2 секунды мигать подключённый к 13-му выводу платы светодиод:

    void setup () { pinMode (13, OUTPUT); // Назначение 13 вывода Arduino выходом}

    void loop () { digitalWrite (13, HIGH); // Включение 13 вывода, параметр вызова функции digitalWrite HIGH - признак высокого логического уровня

    delay (1000); // Цикл задержки на 1000 мс - 1 секунду

    digitalWrite (13, LOW); // Выключение 13 вывода, параметр вызова LOW - признак низкого логического уровня

    delay (1000); // Цикл задержки на 1 секунду}

    Однако в настоящий момент перед пользователем далеко не всегда встаёт необходимость лично писать программу: в сети выложено множество готовых библиотек и скетчей (загляните сюда: http://arduino.ru/Reference). Имеется готовая программа и для системы, рассматриваемой в этом примере. Её нужно загрузить, распаковать и импортировать в IDE. Текст программы снабжён комментариями, поясняющими принцип её работы.


    Все программы на Arduino работают по одному принципу: пользователь посылает запрос процессору, а тот загружает необходимый код на экран компьютера или смартфона

    Когда пользователь нажимает в браузере или установленном на смартфоне приложении кнопку «Refresh» (Обновление), микроконтроллер Arduino осуществляет отсылку данных этому клиенту. С каждой из страниц, обозначенных как «/tempin», «/tempout», «/rain», «/window», «/alarm», поступает программный код, который и отображается на экране.

    Установка клиентского приложения на смартфон (для ОС Android)

    Для получения данных от системы «умный дом» в сети можно скачать готовое приложение.

    Вот что необходимо сделать владельцу гаджета:


    С помощью этого приложения можно не только получать информацию от системы «умный дом», но и управлять ею - включать и отключать сигнализацию. Если она включена, то при срабатывании датчика движения приложению будет отправлено уведомление. Опрос системы Arduino на предмет срабатывания датчика движения приложение выполняет с периодичностью раз в минуту.

    Активировав иконку «Настройки», можно отредактировать свой IP-адрес.

    Настройка браузера на работу с «умным домом»

    В адресной строке браузера следует ввести XXX.XXX.XXX.XXX/all, где «XXX.XXX.XXX.XXX» - ваш IP-адрес. После этого появится возможность получать данные от системы и осуществлять управление ею.

    Представленный здесь программный код позволяет через браузер включать и выключать свет, тогда как в приложении для Android-смартфона такая функция не реализована.

    Работа с роутером
    Настройка учётной записи на noip.com

    Этот этап не является обязательным, но он необходим, если вы хотите присвоить адресу доменное имя. Для этого надо зарегистрироваться на сайте https://www.noip.com/ , перейти в раздел «Add host» и ввести IP-адрес системы.


    После регистрации на сайте noip.com доступ к системе можно получать не только по IP-адресу, но и по полному доменному имени

    Создание проекта завершено, можно проверять работоспособность системы.

    Видео: умный дом на «Ардуино» Особенности работы некоторых аппаратных средств Arduino

    Ввиду того что Arduino-совместимые компоненты выпускаются множеством сторонних компаний, качество продукции которых сама компания Arduino никак не контролирует, пользователь с большой вероятностью может приобрести компонент, работающий не совсем корректно.

    Похожая ситуация сложилась в сфере разработки персональных компьютеров. В своё время компания IBM сделала архитектуру своих компьютеров открытой, вследствие чего IBM-совместимые компьютеры и отдельные компоненты стали выпускать многие компании. В итоге «персоналки» этого типа широко распространились по всему миру, однако, качество комплектующих и степень их совместимости во многих случаях оказывались не на самом высоком уровне. Противоположной тактики придерживалась компания Apple. Она ограничила круг разработчиков, имеющих доступ к архитектуре, и такую же политику провела в сфере разработки ПО. В итоге компьютеры Apple оказались менее распространёнными и более дорогими, но зато по качеству они на порядок превосходят IBM-совместимые устройства, работающие под Windows.

    В отношении некоторых комплектующих для систем Arduino пользователи заметили следующее:

  • Датчик температуры DHT11, поставляемый с базовым набором (StarterKit), даёт значительную погрешность в 2–3 градуса. В помещении рекомендуют применять температурный датчик DHT22, дающий более точные показания, а для установки на улицу - DHT21, способный работать при отрицательных температурах и имеющий защиту от механических повреждений.
  • На некоторых микропроцессорных платах Arduino при замыкании подключённых к ним реле выходит из строя COM-порт. Из-за этого на микроконтроллер не удаётся загрузить скетч: как только начинается заливка, процессор перезагружается. Реле при этом щёлкает, COM-порт отключается и процесс загрузки скетча прекращается.
  • Датчик закрытия окна/двери иногда преподносит сюрпризы в виде ложных срабатываний. С учётом этого скетч пишут так, чтобы система производила необходимое действие только по получении нескольких сигналов подряд.
  • Для настройки управления процессами при помощи хлопков некоторые пользователи по неопытности вместо микрофона заказывают детектор звука с ручной настройкой порога. Для подобных целей этот компонент не подходит, так как имеет слишком малый радиус действия: хлопать приходится не далее 10 см от детектора. Кроме того, этот датчик передаёт сигналы импульсами малой продолжительности, так что при наличии большого скетча, на обработку которого уходит сравнительно много времени, микроконтроллер просто не успевает их зафиксировать.
  • Для устройства противопожарной сигнализации следует использовать датчик дыма, а не датчик огня. Последний регистрирует пламя не далее 30 см от себя.
  • На случай сбоя в работе микроконтроллера или ошибки в коде лучше применять нормально замкнутые реле с последовательно подключёнными ручными выключателями.
  • Чтобы избежать покупки низкокачественных комплектующих, бывалые пользователи рекомендуют предварительно изучать отзывы о них, опубликованные в Сети. Недорогие датчики можно покупать в нескольких вариантах, чтобы лично проверить, какой из них работает лучше.

    Возможно, система «умный дом» от компании Arduino является не самой качественной, но зато широчайший выбор компонентов и их доступная стоимость точно сделали её одной из самых популярных. Воспользовавшись нашими советами, вы быстро научитесь создавать проекты Arduino, автоматизируя различные домашние процессы.

    Дальше дело техники - написать под Ардуино цикл опроса параметров и вывести их для начала в монитор порта. Время одного цикла получилось около секунды. Однако в конечном варианте проекта с логированием данных на флэшку и опросом температурных датчиков это время выросло до 4-x секунд. Это меня уже совершенно не устраивало и пришлось погрузиться в оптимизацию. В итоге я вновь добился секундного интервала без потери функциональности. К слову, скетч я переписывал с нуля два или три раза, пока не нашёл правильную архитектуру и экономные алгоритмы.

    Программная реализация обмена со счётчиком

    Код выдран из контекста моего большого рабочего скетча. Скомпилирован, но в таком виде я его никогда не запускал. Привожу только для примера, а не как готовую рабочую программу. Хотя в теории всё должно работать именно в таком виде.

    Код написан для двух типов счётчиков одновременно, однофазного МТ-124 и трёхфазного МТ-324. Выбор типа счётчика происходит в программе автоматически по ответному слову инициализирующей команды.

    Код привожу как есть, без прекрас и дополнительных комментариев кроме тех, что писал сам для себя. И да, я не программист, и даже не учусь на него, поэтому пинать меня за качество кода не следует, но поучить как надо кодить можно: EnergyMeterNeva.ino

    Огромный дополнительный плюс счётчика электроэнергии - это надёжные и точные часы реального времени. Мне не пришлось обеспечивать систему дополнительным модулем, который ещё нужно найти не просто абы какой, а качественный. Текущее время с точностью до секунды я получаю со счётчика среди прочих данных. Да, относительно атомного времени время счётчика немного сдвинуто (несколько секунд), уж не знаю с чем это связано, с некачественной заводской установкой или ещё чем, но точность хода при этом отличная, просто с небольшим смещением.

    В редкие моменты, когда электропитание на даче отключается и счётчик становится недоступен, текущее время я получаю от внутреннего таймера Ардуины. Когда электросчётчик работает и его данные доступны, внутренний таймер Ардуины я перепрописываю значением со счётчика на каждом витке loop. Когда счётчик отваливается - текущее время продолжает тикать на таймере Ардуины.

    Помимо чтения параметров счётчик, естественно, можно и программировать. То есть интерфейс работает и на чтение, и на запись. Однако я с такими сложностями добивался протокола команд чтения, что о просьбе протокола записи я даже не заикнулся производителю. Во-первых, мне это было ни к чему, разве что только время чуть сдвинуть. Во-вторых, подозреваю, что эти данные уже не являются открытыми, так как могут быть использованы в мошеннических целях.

    Температурные датчики

    Тест температурных датчиков с помощью скетча-примера я уже проводил отдельно раньше. Теперь оставалось только встроить их опрос в основной проект. Это не составило никакого труда. Все девять имеющихся у меня датчиков работали без проблем при параллельном включении по 1-Wire. Разброс показаний между ними составил около 0.5 градуса, что показывает бессмысленность использования их на максимальной точности в 0.0625 градуса. Датчики для теста собрал в пачку и завернул в несколько слоёв пупырчатого полиэтилена. Для большей точности пачку расположил вертикально и ждал сутки для полного выравнивания температуры. Показания всех датчиков так и не оказались одинаковыми.

    Однако загрублять точность конвертации температуры самих датчиков я тоже не стал. Проще округлить показания программно, а выгоды по времени опроса я бы не получил, так как придумал такой алгоритм, при котором время ожидания конвертации не является пустым бесполезным delay(750). Обычная логика работы с датчиками такая - сначала подача команды на запуск конвертации температуры, потом ожидание окончания конвертации (те самые 750 мс минимум), и уже затем вычитывание данных. Я сделал всё наоборот, что позволило мне исключить пустой интервал ожидания - сначала вычитываю данные из датчиков, а потом сразу запускаю конвертацию. И пока весь остальной код в цикле LOOP отработает, данные как раз успевают подготовиться для вычитывания на следующем витке. По времени данные с датчиков я получаю в этом случае чуть позже - цикл LOOP занимает примерно 1-1.5 секунды, но это совершенно не критично.

    Иногда со всех датчиков я получал данные «85» или «0». Что это за косяк, я так и не понял, поэтому сделал в коде проверку и исключил попадание таких данных в результат. Ещё обнаружился косяк у одного из датчиков - он не держал настройки при отключении питания. То ли флэшка его внутренняя дохлая, то ли ещё что. Поэтому в сетапе прописал настройку датчиков, и теперь по включению питания (если оно таки пропадает) все датчики гаранитрованно настроены.

    Адреса конкретных датчиков я получил с помощью скетча-примера, где-то нарытого и немного мной модифицированного: DS18x20_Temperature.ino

    После чего адреса я забил константами в массив и в основной программе обращался к датчикам уже сразу по их адресам: TempSensors_DS18B20.ino

    Для правильной работы датчиков на шине 1-Wire требуется установить подтяжечный резистор 4.7 кОм между линией данных и питанием. Мне было удобно припаять между пинами клеммной колодки SMD-резистор, но нашёл я у себя в подходящем корпусе только 5.1 кОм, его и поставил (он виден на фотке в разделе про сборку на нижней стороне платы). Работает всё хорошо.

    Датчики температуры у меня подключены электрически параллельно на одной длинной линии (+5, gnd и data), все 9 штук, но хитро. Физически кабели витой пары подключены звездой для удобства разводки датчиков по объекту. В каждом плече кабеля я использую две пары. Одна пара - это питание датчика. Вторая пара - это линия данных, которая идёт по одному проводу к датчику и возвращается от него же обратно по второму проводу. Таким образом получается возможным развести кабели звездой от щитка, но электрически это звезда только по питанию, а по данным это одна линия. Такой вариант подключения оказался более надёжен в работе на длинных линиях, при простом параллельном подключении было много сбоев при чтении данных. Вот эскиз такой схемы:

    Полуметровые хвосты трёхпроводных кабелей самих датчиков я не укорачивал, подключил их как были, оказалось не критично.

    Всего по бытовке разведено три кабеля, два - для внешних датчиков, на каждом по одному, и один для всех оставшихся семи внутренних. Эти семь внутренних датчиков подключены по той же схеме, но в пределах одного длинного кабеля и с короткими ответвлениями от него (см. нижнюю Т-образную конфигурацию на эскизе). Где-то хватило штатного полуметрового хвоста датчика для ответвления, где-то ответвлял с помощью такой же витой пары.

    Общая длина витой пары по бытовке составила примерно 25 метров. Куски для внешних датчиков - 5 и 10 метров, и десятиметровый внутренний кусок с ответвлениями на семь датчиков. Всё работает почти идеально. Лишь изредка проскакивают прочерки вместо значений температуры. Это значит, что данные с конкретного датчика были прочитаны некорректно. Но случается это настолько редко (замечаю раз в месяц может), что не доставляет никаких проблем.

    Удалённый доступ

    Для удалённого доступа к Ардуино был куплен Ethernet shield. При наличии встроенной библиотеки работа с ним, как и со всем остальным в Ардуино, оказалась довольно проста.

    Функционально схема работы у меня такая. На Ардуино поднят веб-сервер, который при обращении к нему клиента (браузера) генерирует веб-страничку с различной информацией. Автообновление данных на страничке реализуется посредством яваскрипта, опрашивающего по таймеру сервер.

    Также страничка имеет набор контролов для управления исполнительными механизмами, подключенными к Ардуино - силовыми реле, которые коммутируют нагрузку - электрообогреватели и освещение.

    С дизайном веб-странички я не парился, тем более что был необходим минимальный объём текстовых данных для её более быстрой загрузки, поэтому самый примитивный html и всё:

    В html-код я вместо данных встроил теги, которые на лету подменяются реальными данными при генерации странички сервером. При автообновлении данных по запросу яваскрипта они передаются в браузер уже непосредственно из микроконтроллера в формате JSON.

    Код страничики лежит в файле на карте памяти и загружается с неё при обращении к серверу. Для более быстрой и удобной модификации кода странички я встроил механизм её обновления в неё саму. Внизу, под блоком основных контролов есть текстовое поле и кнопка Отправить. В текстовое поле копирую новый html-код, жму кнопку, после чего java-скрипт производит отправку данных на веб-сервер контроллера, который сохраняет его сначала в буферный файл. Если передача произошла успешно, то основной файл подменяется буферным, страничка автоматически обновляется. Всё. Изменения приняты.

    Привожу фрагменты кода моей реализации этого механизма.
    В html-страничке встраиваем форму:



    CONTROL.HTM:


    Идёт отправка страницы:
    По кнопке «Отправить» запускается следующий ява-скрипт: send_HTM.js

    В скетче в функции обработки запросов веб-сервера по префиксам в запросе "CONTROL.HTM" (старт отправки файла), "htmlineN" (отправка строки №) и "END_CONTROL.HTM" (конец отправки файла) определяем дальнейшие действия:

    File acceptHtmFile; ................ if (fl_accept_htm) // префикс "CONTROL.HTM" { SD.remove(CTRL_HTM); acceptHtmFile = SD.open(CTRL_HTM, FILE_WRITE); // открываем файл на запись if (!acceptHtmFile) // если файл открыть не удалось - ничего не пишем { #ifdef DEBUG_SD Serial.println("SD-card not found"); #endif client.print("FAIL"); client.stop(); } else client.print("OK_OPEN_FILE"); acceptHtmMode = true; break; } if (fl_htmline) // префикс "htmlineN" { int b = acceptHtmFile.println(tag); if (b == 0) { client.print("FAIL"); acceptHtmMode = false; cntHtmModeIteration = 0; } else { client.print("OK"); } cntHtmModeIteration = 0; break; } if (fl_endhtm) // префикс "END_CONTROL.HTM" { SD.remove(CONTROL_HTM); acceptHtmFile.close(); File htmlFile = SD.open(CONTROL_HTM, FILE_WRITE); // открываем на запись acceptHtmFile = SD.open(CTRL_HTM); // открываем на чтение for (int i = 0; i < acceptHtmFile.size(); i++) { digitalWrite(PIN_WATCHDOG_DONE, 1); htmlFile.write(acceptHtmFile.read()); digitalWrite(PIN_WATCHDOG_DONE, 0); } acceptHtmFile.close(); htmlFile.close(); client.print("OK_CLOSE_FILE"); acceptHtmMode = false; cntHtmModeIteration = 0; break; }
    Дефайны CONTROL_HTM и CTRL_HTM здесь это имена html-файлов. Первый - основной файл, второй - буферный. В массиве чаров tag лежит текст принятой строки, выделенный из запроса. Логика такова: при приёме данных они пишутся в буферный файл, по окончании приёма буферный файл переписывается в основной. Как просто переименовать файлы я так и не смог понять, в стандартной библиотеке SD такой функции нет, поэтому тупое посимвольное копирование, отнимающее кучу времени.

    Было бы удобным код веб-странички управления хранить не на карте памяти контроллера, а на клиентской машине, или загружать с какого-нибудь внешнего ресурса. Но запрет на кроссдоменные запросы не позволяет этого сделать. Яваскрипты могут отправлять свои запросы только тому северу, с которого были загружены сами. Тела яваскриптов при этом могут подгружаться откуда угодно, важно лишь только откуда была загружена страница с их вызовом.

    Логирование данных

    Ethernet shield имеет на борту слот карты памяти micro-SD. Именно из-за его наличия я и решил писать данные в лог-файлы. Для работы с картой памяти также имеется встроенная библиотека, и управлять записью-чтением файлов с ней вообще элементарно.

    Для экономии объёма данных алгоритм логирования я построил так, что запись происходит только тогда, когда данные изменяются более чем на заданный порог. Для температуры это 0.1°, для напряжения это 0.2В. В один файл пишутся данные за одни сутки. В ноль часов создаётся новый файл. Формат хранения я выбрал обычный текстовый, с разделителями, чтобы можно было быстро контролировать содержимое файлов при отладке, и была бы простая возможность загрузки в Excel.

    Конструктивные ограничения не позволяют удобно вставлять-вынимать карту памяти, поэтому я использовал карту большого объема. По моим расчётам, она будет заполняться в течение нескольких лет, после чего нужно будет подразобрать корпус, вынуть карту памяти и очистить её.

    Приводить код логирования смысла не вижу, там всё совершенно тривиально - банальная запись текста в файл. Да и размазан этот код по всему скетчу (логируются не только параметры датчиков, но ещё и разнообразные разовые события), вычленить затруднительно.

    Графики

    В качестве движка для построения графиков я использую очень гибко настраиваемую javascript-библиотеку визуализации данных amchart . Библиотека бесплатная и доступна для скачивания и автономного использования. Эту библиотеку я также расположил на своём сетевом хранилище с постоянным доступом в интернет. Подключить и использовать её с дефолтными настройками не сложно, однако чтобы получить в итоге тот вид, который мне был нужен, пришлось немало повозиться. Помогло огромное количество примеров на сайте и наличие подробной документации.

    Для примера приведу свой яваскрипт отрисовки графиков. Сам по себе он бесполезен, так как работает только в совокупности и с веб-сервером, и с html-страницей, и, возможно, завязан на другие скрипты (дело было давно, всех деталей уже не помню). Но настройки внешнего вида моих графиков содержаться именно в нём и почерпнуть их оттуда можно: get_log.js

    Большим преимуществом библиотеки amchart является то, что она умеет отрисовывать правильные графики по «рваным» данным. Как я уже упоминал выше, в лог я сохраняю данные только при их изменении. То есть это происходит асинхронно и хаотично. Новых данных может не быть несколько минут, а потом за несколько секунд они поменяются несколько раз. Соответственно записи в логе идут с произвольными интервалами времени. Amchart при отрисовке учитывает это самостоятельно, у меня нет необходимости интерполировать данные перед отрисовкой. Я просто отправляю массив данных как есть, и вижу красивый равномерный во времени график.

    Недостаток этой библиотеки я обнаружил только один - она не умеет (ну или я так и не понял как) по-человечески обновлять графики в реальном времени. Можно добавить новые данные к уже имеющимся, но перерисовка производится каждый раз полностью всего массива данных, и это сильно подтормаживает работу браузера. Впрочем, сама идеология чтения из Ардуины данных для отрисовки по запросу из браузера ущербна своей неоптимальностью, поэтому бороться за быстрое обновление в реальном времени смысла не было никакого.

    Правильным решением было бы организовать отдельный сервер хранения и визуализации данных, куда с Ардуины в реальном времени данные капали бы по чуть-чуть и складировались в БД, и откуда бы они могли быстро быть отданы пользователю в браузер для визуализации.

    Сейчас графики выглядят так (на примере дня, когда в бытовке никого нет и, соответственно, нет никакого энергопотребления). Когда возникают данные тока, масштаб автоматически устанавливается так, чтобы всё красиво влезало, и на вертикальной оси возникают и значения уровней тока:

    Графики отображаются на той же самой страничке, где происходит управление, прямо ниже основного блока контролов.

    Полный комплект исходников проекта не привожу намеренно по нескольким причинам:

  • Его нельзя запустить как есть в любой другой сети, кроме моей, так как я не пытался сделать проект портабельным, и он жёстко завязан на мои адреса и мою топологию сети.
  • Я уверен, что общая идеология проекта страдает массой разнообразных проблем, так как это моя первая попытка в той области, в которой я разбираюсь плохо. Поэтому не предлагаю никому весь проект к повторению именно в таком виде. Я поделился лишь теми моментами, в которых более менее уверен.
  • Проект делался давно и долго, и я уже никогда не вспомню всех деталей и не смогу объяснить ряд решений. Объём скетча очень большой (по моим меркам, около 2 тыс строк), разнообразных обслуживающих ява-скриптов более десятка, принципиальную схему железа я не делал. То есть не смогу помочь консультативно по большинству вопросов.
  • Сборка

    С самого начала я поставил себе цель - сделать законченное устройство, а не просто макет с ворохом проводочков на столе:

    И сразу же решил, что устройство это я хочу разместить внутри электрощитка. Там и питание, и счётчик, и вообще, это удобно.

    Для этого требовался динреечный корпус. Вначале думал разработать его и напечатать на 3D-принтере. Но, своего 3D-принтера у меня нет, а то, что печатают мои коллеги по работе на своих самосборных принтерах, меня совершенно не устраивало по качеству внешнего вида. Нашел в продаже готовые корпуса на DIN-рейку (разных размеров), выглядят хорошо, пользоваться удобно (разборные), да ещё и плата-слепыш под них специально имеется готовая.

    Купил самый большой корпус, чтобы в него вместилась не только Ардуино с изернет-шилдом, но еще и реле для коммутации нагрузки:

    Дальше был длительный и увлекательный процесс монтажа всей требухи в корпус. Под это дело я даже приобрёл себе замечательный паяльничек с функцией сна (имеющиеся у меня паяльники все были ещё советских времен):

    Для монтажа накупил кучу всевозможных стоечек, винтиков, шайбочек и гаечек. Первая прикидочная сборка:

    Для подключения проводов к верхним контактам пришлось использовать загнутые штырьки, иначе не влезало в корпус:

    Изолирующие шайбы местами приходилось подрезать:

    А местами изгаляться более извратно, поднимать винт на втулке, и вычурно подрезать втулку:

    Для одиночной релюшки не хватило точек опоры, поэтому повисла только на двух точках:

    Прикидочная сборка вместе с клеммными колодками:

    Потом поделка стала постепенно обрастать проводами. Плата была использована только для разводки питания и для подключений к клеммным колодкам. Для сигнальных связей использовал провод МС-16 (мне он больше нравится), для силовых он не проходил по напряжению (до 100 В), поэтому МГТФ:

    На лицевой панели закрепил светодиодики, токоограничивающие резисторы припаял прямо к ножкам светодиодов и закрыл термоусадкой:

    В итоге получилась вот такая бородатая начинка:

    А вот и платка с микросхемкой сторожевого таймера, приютилась в недрах моего творения, прямо над преобразователем уровней RS-485 - TTL:

    Вся конструкция разборная, всё можно снять, отсоединить и заменить без пайки, кроме платки с вотчдогом, она припаяна к пинам разъема, одетого на ряд IO-портов Ардуины.

    В коробочке:

    Отверстия под разъёмы Ардуины выпилил в пластиковой стенке корпуса. Сначала сделал отверстия точно по размерам разъёмов, но сборку в корпус нужно заводить по диагнонали (иначе просто никак) и разъёмы не проходили, пришлось расточить немного:

    Включение готового изделия на столе, всё заработало сразу:

    На лицевую панель вывел:

    • Четыре красных светодиода - индикация нагрузки;
    • Два зеленых - наличие связи со счётчиком и с VPN-сервером;
    • Два желтых - запасные;
    • Один желтый - индикация перезагрузки роутера;
    • Один красный - питание;
    • И кнопочка сброса.
    Для получения 5-ти вольт из 220-ти я использовал динреечный блок питания с подстройкой выходного уровня, питание подано непосредственно на микроконтроллер, минуя входной преобразователь из 7-12 в 5 вольт. Это было удобно по нескольким причинам. Во-первых, мощности встроенного преобразователя в какой-то момент стало не хватать, ток там ограничен. Во-вторых, питать реле всё равно нужно было 5-ю вольтами. В третьих, в щитке удобен динреечный форм-фактор с точки зрения монтажа. Поэтому вот:

    Испытания

    На столе всё было преверено, всё работало как надо, настала пора инсталлировать контроллер в щиток и проверить его в боевом режиме.

    Но сначала я подключил всё «на соплях», буквально затолкав всю требуху в другой щиток, слаботочный, чтобы протестировать работу термодатчиков в реальных условиях на длинных линиях, проложенных в одном кабель-канале с силовыми кабелями ~220В:

    Как можно заметить на фотке выше, доселе я пытался управлять перезагрузкой роутера по питанию с помощью «умной» розетки Senseit. Однако сей девайс безумной стоимостью в 5 тыс (на 2016 год) оказался на редкость глючным и капризным. За год использования не раз заставлял меня незапланированно приезжать на дачу в неурочное время, дабы вручную вывести это чудо инженерной и маркетинговой мысли из глубокого дауна в части GSM-связи. С переходом на свой Ардуино-контроллер, который оказался не в пример надёжнее, я с облегчением бросил это «профессиональное» барахло в красивой коробочке в ящик, и забыл про него.

    Тест прошёл успешно, сбоев не было, и можно было приступить к окончательной инсталляции в штатное место:

    Да-да, это щиток ABB TwinLine 800x300x225 IP55, стоимостью в 25 тыс. руб. без начинки (и начинка ещё на 15 тыс. примерно). И да, он установлен в бытовке 6х2. У всех свои тараканы. Да, собирал всю электрику сам . И бытовку строил тоже, да. Нет, я не электрик. И не строитель.

    В глубине щитка я расположил небольшой источник бесперебойного питания Powercom WOW 300 , вон там горит его зелёный светодиод, а левее и выше - его вилка входного питания:

    Его хватает на ~40 минут автономной работы Ардуино-девайса, роутера с USB-модемом и вайфаем, и Full HD IP-камеры наружного наблюдения.

    А здесь видны белые вилки питания двух бесперебойных потребителей - блок питания Ардуино и слаботочный щиток, где расположен роутер и блок питания камеры наружного наблюдения. Эта линия идёт с разрывом через контактор, которым управляет Ардуино, как раз для того самого программного вотчдога, перезагружающего роутер по питанию в случае падения VPN (камера перезагружается заодно, хотя ей это и не надо). Сверху к контроллеру подключены линии витых пар от датчиков температуры:

    Надо сказать, что маленьким синим китайским релюшечкам я бы никогда не доверил коммутацию мощной нагрузки, несмотря на вроде бы позволяющие это делать параметры этих релюшек. Поэтому сразу же было заложено использование нормальных модульных контакторов Legrand кат.№ 4 125 01 с возможностью ручного управления. То есть релюшки внутри корпуса контроллера управляют контакторами, а контакторы уже управляют нагрузкой. Это надёжно. А вот питание роутера и камеры осуществляется только лишь через эту маленькую синюю китайскую релюшку, ток там небольшой, поэтому можно.

    При первом же боевом запуске меня ждало большое разочарование. На столе я испытал всё, кроме нагрузки. Зачем? Контакторы щёлкают, и так понятно, что нагрузку они коммутировать будут. Ан нет, надо было испытать. Мощные электроконвекторы привнесли в систему помеху в момент размыкания контактов, что приводило к гарантированному зависанию изернет-шилда. Причем вывести его из дауна было возможно только снятием питания, простой ресет не помогал. Погуглил - да, есть такая проблема у этой китайщины. И библиотека не обрабатывает эту ситуацию. То есть и железка хреновая, и софт не очень.

    Думал уже, что всё пропало. Даже заказал твёрдотельные реле, но они, сволочи, больше по высоте, и в мою конструкцию уже не поместились бы. Но потом подумал, что может быть всё же помеху можно подавить. Опять погуглил, нашёл специальные помехоподавляющие конденсаторы (т.н. конденсаторы типа X). Просто подключил их параллельно управляющей обмотке контакторов, и о чудо! Зависания пропали полностью. За вот уже год эксплуатации ни одного случая не зарегистрировано:

    А вот таким образом можно заглянуть внутрь коробки:

    Ну и законченный вид щитка с пластроном (заглушек вот в комплекте не дали):

    Для дебага и перепрошивки кабель USB подключен к контроллеру и хранится внутри щитка за закрытой дверцей (изернет на этой фотке временно не подключен):

    Система работает уже почти год, пережила морозы до 20 градусов без проблем.

    В целом я доволен результатом. Однако для более-менее функциональных задач Ардуино явно слабенький. Я уже не раз сталкивался с исчерпыванием памяти и приходилось кроить и оптимизировать. Да и скорость работы, особенно с картой памяти, меня совершенно не устраивает. Поэтому будущие реализации подобных поделок, если таковые потребуются, я бы хотел основывать на чём-то более мощном. Коллеги пиарят мне Raspberry Pi, хороший вариант, думаю. Добавить метки