Определение числовой последовательности. Последовательности натуральных чисел


Натуральное число является количественной характеристикой одного неизменного множества, однако, на практике количество предметов постоянно меняется, например, поголовье скота в некотором хозяйстве. Более того, простейшая, но и важнейшая последовательность сразу же возникает в процессе счёта – это последовательность натуральных чисел: 1, 2, 3, ….

Если изменение количества предметов в некоторой совокупности зафиксировано в виде некоторой последовательности натуральных чисел (членов последовательности), тут же естественным образом возникает ещё одна последовательность – последовательность номеров, например

В связи с этим возникает проблема обозначения членов последовательности. Обозначение каждого члена особой буквой крайне неудобно по следующим причинам. Во-первых, последовательность может содержать очень большое, или даже бесконечное число членов. Во-вторых, разные буквы скрывают тот факт, что члены последовательности относятся к одной совокупности, хотя и меняющей количество элементов. Наконец, в этом случае не будут отражены номера членов в последовательности.

Эти причины заставляют обозначать члены последовательности одной буквой и различать их по индексу. Например, последовательность, состоящую из десяти членов, можно обозначить буквой а : а 1 , а 2 , а 3 , …, а 10 . Тот факт, что последовательность является бесконечной, выражается многоточием, как бы неограниченно продлевающим эту последовательность: а 1 , а 2 , а 3 , … Иногда последовательность начинают нумеровать с нуля: : а 0 , а 1 , а 2 , а 3 , …

Некоторые последовательности могут восприниматься как случайные наборы чисел, поскольку не известен, или вообще отсутствует, закон формирования членов последовательности. Однако особое внимание привлекают последовательности, для которых такой закон известен.

Для указания закона формирования членов последовательности чаще всего используются два способа. Первый из них состоит в следующем. Задается первый член, а затем указывается способ, согласно которому с помощью последнего, уже известного члена получается следующий. Для записи закона используется член последовательности с неопределённым номером, например, а k и следующий за ним член а k +1 , после чего записывается связывающая их формула.

Наиболее известными и важными примерами могут послужить арифметическая и геометрическая прогрессии. Арифметическая прогрессия определяется формулой а k +1 = а k + r (либо а k +1 = а k – r ). Члены арифметической прогрессии либо равномерно растут (лесенкой), либо равномерно убывают (тоже лесенкой). Величина r называется разностью прогрессии, поскольку а k +1 а k = r . Примерами арифметических прогрессий с натуральными членами являются

а) натуральные числа (а 1 = 1 ;а k +1 = а k + 1 );

б) бесконечная последовательность 1, 3, 5, 7, … (а 1 = 1 ;а k +1 = а k + 2 );

в) конечная последовательность 15, 12, 9, 6, 3 (а 1 = 15 ;а k +1 = а k 3 ).

Геометрическая прогрессия определяется формулой b k +1 = b k ∙q . Величина q называется знаменателем геометрической прогрессии, поскольку b k +1:b k = q . Геометрические прогрессии с натуральными членами и знаменателем, превосходящим единицу, растут и растут быстро, даже лавинообразно. Примерами геометрических прогрессий с натуральными членами являются

а) бесконечная последовательность 1, 2, 4, 8, … (b 1 = 1 ;b k +1 = b k ∙2 );

б) бесконечная последовательность 3, 12, 48, 192, 768,… (b 1 = 3 ;b k +1 = b k ∙4 ).

Второй способ указания закона определения членов последовательности состоит в указании формулы, позволяющей вычислить член последовательности с неопределённым номером (общий член), например, а k , с помощью номера k .

Члены арифметической и геометрической прогрессий можно вычислять и этим способом. Поскольку арифметическая прогрессия определяется формулой а k +1 = а k + r , легко понять, как выражается член а k с помощью номера k :

а 1 – определён произвольно;

а 2 = а 1 + r= а 1 + 1∙r ;

а 3 = а 2 + r = а 1 + r + r = а 1 + 2∙r ;

а 4 = а 3 + r = а 1 + 2∙r + r = а 1 + 3∙r ;

…………………………………

а k = а 1 + (k 1)∙r – итоговая формула.

Для геометрической прогрессии аналогичным способом выводится формула общего члена: b k = b 1 ∙ q k 1 .

Кроме арифметической и геометрической прогрессий таким же способом можно определить другие последовательности, имеющие особый характер изменения. В качестве примера приведём последовательность квадратов натуральных чисел: s k = k 2: 1 2 = 1, 2 2 = 4, 3 2 = 9, 4 2 = 16, 5 2 = 25…

Существуют более сложные способы образования последовательностей, например, одна строится с помощью другой. Особое значение для арифметики имеет геометрическая прогрессия, определяемая параметрами b 1 = 1, q = 10, то есть последовательность степеней десятки: 1 = 10 0 , 10 = 10 1 , 10 2 , 10 3 , …, 10 k , … Она используется для представления натуральных чисел в позиционной системе счисления. При этом для каждого натурального числа n возникает последовательность, состоящая из цифр, с помощью которых записывается данное число: а n а n – 1 … а 2 а 1 а 0 . Цифра а k указывает сколько слагаемых типа 10 k содержит число n .



Понятие последовательности подводит к важнейшим для математики понятиям величины и функции. Величина – это изменяющаяся числовая характеристика какого-то предмета или явления. Её изменение воспринимается как последовательность чисел. Существование зависимости между самими членами и их номерами, а также её выражение с помощью формул вплотную подводит к понятию функции.

10. Десятичная система счисления.

Важнейшим математическим открытием, которое используется практически каждым членом достаточно развитого общества, является позиционная система счисления. Она позволила решить основную проблему счёта, состоящую в умении называть все новые и новые числа, используя обозначения (цифры) только для нескольких первых чисел.

Позиционная система счисления традиционно связана с числом десять, но на тех же принципах можно построить и иные системы, например, двоичную. При построении десятичной позиционной системы счисления вводятся десять арабских цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. С их помощью может быть записано число, выражающее количество предметов любого конечного множества. Для этой цели используется специальный алгоритм, то есть чётко определённая последовательность элементарных действий.

Пересчитываемые предметы объединяются в группы по десять, что соответствует делению на десять с остатком. В результате образуются два множества – единиц и десятков. Десятки снова группируются по десять в сотни. Ясно, что число десятков (обозначим его через а 1 ) обязательно меньше десяти, и, значит, а 1 можно обозначить цифрой. Далее сотни группируются в тысячи, тысячи – в десятки тысяч и т. д. пока все предметы не будут сгруппированы. Построение числа завершается тем, что слева направо записываются полученные цифры от больших индексов к меньшим. Цифре а k соответствуют количество групп предметов по 10 k . Итоговая запись числа состоит из конечной последовательности цифр а n а n – 1 … а 2 а 1 а 0 . Соответствующее число равно выражению

а n ·10 n + а n – 1 ·10 n – 1 + … + а 2 ·10 2 + а 1 ·10 1 + а 0 ·10 0 .

Слово «позиционная» в названии системы счисления связано с тем, что цифра меняет свой смысл в зависимости от своей позиции в записи числа. Последняя цифра задаёт число единиц, предпоследняя – число десятков и т. д.

Отметим, что алгоритм для получения записи чисел в системе счисления с любым основанием N : состоит в последовательной группировке предметов по N штук. При записи числа необходимо использовать N цифр.

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Математика — наука, строящая мир. Как учёный, так и простой человек — никто не сможет обойтись без неё. Сначала маленьких детей учат считать, потом складывать, вычитать, умножать и делить, к средней школе в ход вступают буквенные обозначения, а в старшей без них уже не обойтись.

Но сегодня речь пойдёт о том, на чём строится вся известная математика. О сообществе чисел под названием «пределы последовательностей».

Что такое последовательности и где их предел?

Значение слова «последовательность» трактовать нетрудно. Это такое построение вещей, где кто-то или что-то расположены в определённом порядке или очереди. Например, очередь за билетами в зоопарк — это последовательность. Причём она может быть только одна! Если, к примеру, посмотреть на очередь в магазин — это одна последовательность. А если один человек из этой очереди вдруг уйдёт, то это уже другая очередь, другой порядок.

Слово «предел» также легко трактуется — это конец чего-либо. Однако в математике пределы последовательностей — это такие значения на числовой прямой, к которым стремится последовательность чисел. Почему стремится, а не заканчивается? Всё просто, у числовой прямой нет конца, а большинство последовательностей, как лучи, имеют только начало и выглядят следующим образом:

х 1 , х 2 , х 3 , …х n …

Отсюда определение последовательности — функция натурального аргумента. Более простыми словами — это ряд членов некоторого множества.

Как строится числовая последовательность?

Простейший пример числовой последовательности может выглядеть так: 1, 2, 3, 4, …n…

В большинстве случаев для практических целей последовательности строятся из цифр, причём каждый следующий член ряда, обозначим его Х, имеет своё имя. Например:

х 1 — первый член последовательности;

х 2 — второй член последовательности;

х 3 — третий член;

х n — энный член.

В практических методах последовательность задаётся общей формулой, в которой есть некоторая переменная. Например:

Х n =3n, тогда сам ряд чисел будет выглядеть так:

Стоит не забывать, что при общей записи последовательностей можно использовать любые латинские буквы, а не только Х. Например: y, z, k и т. д.

Арифметическая прогрессия как часть последовательностей

Прежде чем искать пределы последовательностей, целесообразно поглубже окунуться в само понятие подобного числового ряда, с которым все сталкивались, будучи в средних классах. Арифметическая прогрессия — это ряд чисел, в котором разница между соседними членами постоянна.

Задача: «Пусть а 1 =15, а шаг прогрессии числового ряда d=4. Постройте первые 4 члена этого ряда»

Решение: а 1 = 15 (по условию) — первый член прогрессии (числового ряда).

а 2 = 15+4=19 — второй член прогрессии.

а 3 =19+4=23 — третий член.

а 4 =23+4=27 — четвёртый член.

Однако подобным методом трудно добраться до крупных значений, например до а 125. . Специально для таких случаев была выведена удобная для практики формула: а n =a 1 +d(n-1). В данном случае а 125 =15+4(125-1)=511.

Виды последовательностей

Большинство последовательностей бесконечны, это стоит запомнить на всю жизнь. Существует два интересных вида числового ряда. Первый задаётся формулой а n =(-1) n . Математики часто называют эту последовательностей мигалкой. Почему? Проверим её числовой ряд.

1, 1, -1 , 1, -1, 1 и т. д. На подобном примере становится ясно, что числа в последовательностях могут легко повторяться.

Факториальная последовательность. Легко догадаться — в формуле, задающей последовательность, присутствует факториал. Например: а n = (n+1)!

Тогда последовательность будет выглядеть следующим образом:

а 2 = 1х2х3 = 6;

а 3 = 1х2х3х4 =24 и т. д.

Последовательность, заданная арифметической прогрессией, называется бесконечно убывающей, если для всех её членов соблюдается неравенство -1

а 3 = - 1/8 и т. д.

Существует даже последовательность, состоящая из одного и того же числа. Так, а n =6 состоит из бесконечного множества шестёрок.

Определение предела последовательности

Пределы последовательностей давно существуют в математике. Конечно, они заслужили свое собственное грамотное оформление. Итак, время узнать определение пределов последовательностей. Для начала рассмотрим подробно предел для линейной функции:

  1. Все пределы обозначаются сокращённо lim.
  2. Запись предела состоит из сокращения lim, какой-либо переменной, стремящейся к определённому числу, нулю или бесконечности, а также из самой функции.

Легко понять, что определение предела последовательности может быть сформулировано следующим образом: это некоторое число, к которому бесконечно приближаются все члены последовательности. Простой пример: а x = 4x+1. Тогда сама последовательность будет выглядеть следующим образом.

5, 9, 13, 17, 21…x …

Таким образом, данная последовательность будет бесконечно увеличиваться, а, значит, её предел равен бесконечности при x→∞, и записывать это следует так:

Если же взять похожую последовательность, но х будет стремиться к 1, то получим:

А ряд чисел будет таким: 1.4, 1.8, 4.6, 4.944 и т. д. Каждый раз нужно подставлять число всё больше приближеннее к единице (0.1, 0.2, 0.9, 0.986). Из этого ряда видно, что предел функции — это пять.

Из этой части стоит запомнить, что такое предел числовой последовательности, определение и метод решения простых заданий.

Общее обозначение предела последовательностей

Разобрав предел числовой последовательности, определение его и примеры, можно приступить к более сложной теме. Абсолютно все пределы последовательностей можно сформулировать одной формулой, которую обычно разбирают в первом семестре.

Итак, что же обозначает этот набор букв, модулей и знаков неравенств?

∀ — квантор всеобщности, заменяющий фразы «для всех», «для всего» и т. п.

∃ — квантор существования, в данном случае обозначает, что существует некоторое значение N, принадлежащее множеству натуральных чисел.

Длинная вертикальная палочка, следующая за N, значит, что данное множество N «такое, что». На практике она может означать «такая, что», «такие, что» и т. п.

Для закрепления материала прочитайте формулу вслух.

Неопределённость и определённость предела

Метод нахождения предела последовательностей, который рассматривался выше, пусть и прост в применении, но не так рационален на практике. Попробуйте найти предел для вот такой функции:

Если подставлять различные значения «икс» (с каждым разом увеличивающиеся: 10, 100, 1000 и т. д.), то в числителе получим ∞, но в знаменателе тоже ∞. Получается довольно странная дробь:

Но так ли это на самом деле? Вычислить предел числовой последовательности в данном случае кажется достаточно легко. Можно было бы оставить всё, как есть, ведь ответ готов, и получен он на разумных условиях, однако есть ещё один способ специально для таких случаев.

Для начала найдём старшую степень в числителе дроби — это 1, т. к. х можно представить как х 1 .

Теперь найдём старшую степень в знаменателе. Тоже 1.

Разделим и числитель, и знаменатель на переменную в высшей степени. В данном случае дробь делим на х 1 .

Далее найдём, к какому значению стремится каждое слагаемое, содержащее переменную. В данном случае рассматриваются дроби. При х→∞ значение каждой из дробей стремится к нулю. При оформлении работы в писменном виде стоит сделать такие сноски:

Получается следующее выражение:

Конечно же, дроби, содержащие х, не стали нулями! Но их значение настолько мало, что вполне разрешено не учитывать его при расчётах. На самом же деле х никогда не будет равен 0 в данном случае, ведь на ноль делить нельзя.

Что такое окрестность?

Предположим, в распоряжении профессора сложная последовательность, заданная, очевидно, не менее сложной формулой. Профессор нашёл ответ, но подходит ли он? Ведь все люди ошибаются.

Огюст Коши в своё время придумал отличный способ для доказательства пределов последовательностей. Его способ назвали оперированием окрестностями.

Предположим, что существует некоторая точка а, её окрестность в обе стороны на числовой прямой равна ε («эпсилон»). Поскольку последняя переменная — расстояние, то её значение всегда положительно.

Теперь зададим некоторую последовательность х n и положим, что десятый член последовательности (x 10) входит в окрестность а. Как записать этот факт на математическом языке?

Допустим, х 10 находится правее от точки а, тогда расстояние х 10 -а<ε, однако, если расположить «икс десятое» левее точки а, то расстояние получится отрицательным, а это невозможно, значит, следует занести левую часть неравенства под модуль. Получится |х 10 -а|<ε.

Теперь пора разъяснить на практике ту формулу, о которой говорилось выше. Некоторое число а справедливо называть конечной точкой последовательности, если для любого её предела выполняется неравенство ε>0, причём вся окрестность имеет свой натуральный номер N, такой, что всё члены последовательности с более значительными номерами окажутся внутри последовательности |x n - a|< ε.

С такими знаниями легко осуществить решение пределов последовательности, доказать или опровергнуть готовый ответ.

Теоремы

Теоремы о пределах последовательностей — важная составляющая теории, без которой невозможна практика. Есть всего лишь четыре главных теоремы, запомнив которые, можно в разы облегчить ход решения или доказательства:

  1. Единственность предела последовательности. Предел у любой последовательности может быть только один или не быть вовсе. Тот же пример с очередью, у которой может быть только один конец.
  2. Если ряд чисел имеет предел, то последовательность этих чисел ограничена.
  3. Предел суммы (разности, произведения) последовательностей равен сумме (разности, произведению) их пределов.
  4. Предел частного от деления двух последовательностей равен частному пределов тогда и только тогда, когда знаменатель не обращается в ноль.

Доказательство последовательностей

Иногда требуется решить обратную задачу, доказать заданный предел числовой последовательности. Рассмотрим на примере.

Доказать, что предел последовательности, заданной формулой, равен нолю.

По рассмотренному выше правилу, для любой последовательности должно выполняться неравенство |x n - a|<ε. Подставим заданное значение и точку отсчёта. Получим:

Выразим n через «эпсилон», чтобы показать существование некоего номера и доказать наличие предела последовательности.

На этом этапе важно напомнить, что «эпсилон» и «эн» - числа положительные и не равны нулю. Теперь можно продолжать дальнейшие преобразования, используя знания о неравенствах, полученные в средней школе.

Откуда получается, что n > -3 + 1/ε. Поскольку стоит помнить, что речь идёт о натуральных числах, то результат можно округлить, занеся его в квадратные скобки. Таким образом, было доказано, что для любого значения окрестности «эпсилон» точки а=0 нашлось значение такое, что выполняется начальное неравенство. Отсюда можно смело утверждать, что число а есть предел заданной последовательности. Что и требовалось доказать.

Вот таким удобным методом можно доказать предел числовой последовательности, какой бы сложной она на первый взгляд ни была. Главное — не впадать в панику при виде задания.

А может, его нет?

Существование предела последовательности необязательно на практике. Легко можно встретить такие ряды чисел, которые действительно не имеют конца. К примеру, та же «мигалка» x n = (-1) n . очевидно, что последовательность, состоящая всего лишь из двух цифр, циклически повторяющихся, не может иметь предела.

Та же история повторяется с последовательностями, состоящими из одного числа, дробными, имеющими в ходе вычислений неопределённость любого порядка (0/0, ∞/∞, ∞/0 и т. д.). Однако следует помнить, что неверное вычисление тоже имеет место быть. Иногда предел последоватей найти поможет перепроверка собственного решения.

Монотонная последовательность

Выше рассматривались несколько примеров последовательностей, методы их решения, а теперь попробуем взять более определённый случай и назовём его «монотонной последовательностью».

Определение: любую последовательность справедливо называть монотонно возрастающей, если для нее выполняется строгое неравенство x n < x n +1. Также любую последовательность справедливо называть монотонной убывающей, если для неё выполняется неравенство x n > x n +1.

Наряду с этими двумя условиями существуют также подобные нестрогие неравенства. Соответственно, x n ≤ x n +1 (неубывающая последовательность) и x n ≥ x n +1 (невозрастающая последовательность).

Но легче понимать подобное на примерах.

Последовательность, заданная формулой х n = 2+n, образует следующий ряд чисел: 4, 5, 6 и т. д. Это монотонно возрастающая последовательность.

А если взять x n =1/n, то получим ряд: 1/3, ¼, 1/5 и т. д. Это монотонно убывающая последовательность.

Предел сходящейся и ограниченной последовательности

Ограниченная последовательность — последовательность, имеющая предел. Сходящаяся последовательность — ряд чисел, имеющий бесконечно малый предел.

Таким образом, предел ограниченной последовательности — это любое действительное или комплексное число. Помните, что предел может быть только один.

Предел сходящейся последовательности — это величина бесконечно малая (действительная или комплексная). Если начертить диаграмму последовательности, то в определённой точке она будет как бы сходиться, стремиться обратиться в определённую величину. Отсюда и название — сходящаяся последовательность.

Предел монотонной последовательности

Предел у такой последовательности может быть, а может и не быть. Сначала полезно понять, когда он есть, отсюда можно оттолкнуться при доказательстве отсутствия предела.

Среди монотонных последовательностей выделяют сходящуюся и расходящуюся. Сходящаяся — это такая последовательность, которая образована множеством х и имеет в данном множестве действительный или комплексный предел. Расходящаяся — последовательность, не имеющая предела в своём множестве (ни действительного, ни комплексного).

Причём последовательность сходится, если при геометрическом изображении её верхний и нижний пределы сходятся.

Предел сходящейся последовательности во многих случаях может быть равен нулю, так как любая бесконечно малая последовательность имеет известный предел (ноль).

Какую сходящуюся последовательность ни возьми, они все ограничены, однако далеко не все ограниченные последовательности сходятся.

Сумма, разность, произведение двух сходящихся последовательностей - также сходящаяся последовательность. Однако частное может быть также сходящейся, если оно определено!

Различные действия с пределами

Пределы последовательностей — это такая же существенная (в большинстве случаев) величина, как и цифры и числа: 1, 2, 15, 24, 362 и т. д. Получается, что с пределами можно проводить некоторые операции.

Во-первых, как и цифры и числа, пределы любых последовательностей можно складывать и вычитать. Исходя из третьей теоремы о пределах последовательностей, справедливо следующее равенство: предел суммы последовательностей равен сумме их пределов.

Во-вторых, исходя из четвёртой теоремы о пределах последовательностей, справедливо следующее равенство: предел произведения n-ого количества последовательностей равен произведению их пределов. То же справедливо и для деления: предел частного двух последовательностей равен частному их пределов, при условии что предел не равен нулю. Ведь если предел последовательностей будет равен нулю, то получится деление на ноль, что невозможно.

Свойства величин последовательностей

Казалось бы, предел числовой последовательности уже разобран довольно подробно, однако не раз упоминаются такие фразы, как «бесконечно маленькие» и «бесконечно большие» числа. Очевидно, если есть последовательность 1/х, где x→∞, то такая дробь бесконечно малая, а если та же последовательность, но предел стремится к нулю (х→0), то дробь становится бесконечно большой величиной. А у таких величин есть свои особенности. Свойства предела последовательности, имеющей какие угодно малые или большие величины, состоят в следующем:

  1. Сумма любого количества сколько угодно малых величин будет также малой величиной.
  2. Сумма любого количества больших величин будет бесконечно большой величиной.
  3. Произведение сколь угодно малых величин бесконечно мало.
  4. Произведение сколько угодно больших чисел — величина бесконечно большая.
  5. Если исходная последовательность стремится к бесконечно большому числу, то величина, ей обратная, будет бесконечно малой и стремиться к нулю.

На самом деле вычислить предел последовательности - не такая сложная задача, если знать простой алгоритм. Но пределы последовательностей — тема, требующая максимума внимания и усидчивости. Конечно, достаточно просто уловить суть решения подобных выражений. Начиная с малого, со временем можно достигнуть больших вершин.

Простейшее число — это натуральное число . Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.

Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.

Натуральные числа - это числа, начиная с единицы. Они образуются естественным образом при счёте. Например, 1,2,3,4,5... - первые натуральные числа.

Наименьшее натуральное число - один. Наибольшего натурального числа не существует. При счёте число ноль не используют, поэтому ноль натуральное число.

Натуральный ряд чисел - это последовательность всех натуральных чисел. Запись натуральных чисел:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ...

В натуральном ряду каждое число больше предыдущего на единицу.

Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.

Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.

Классы натуральных чисел.

Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Для чтения натуральных чисел их разбивают, начиная справа, на группы по 3 цифры в каждой. 3 первые цифры справа - это класс единиц, 3 следующие - это класс тысяч, далее классы миллионов, миллиардов и так далее. Каждая из цифр класса называется его разрядом .

Сравнение натуральных чисел.

Из 2-х натуральных чисел меньше то число, которое при счете называется ранее. Например , число 7 меньше 11 (записывают так: 7 < 11 ). Когда одно число больше второго, это записывают так: 386 > 99 .

Таблица разрядов и классов чисел.

1-й класс единицы

1-й разряд единицы

2-й разряд десятки

3-й разряд сотни

2-й класс тысячи

1-й разряд единицы тысяч

2-й разряд десятки тысяч

3-й разряд сотни тысяч

3-й класс миллионы

1-й разряд единицы миллионов

2-й разряд десятки миллионов

3-й разряд сотни миллионов

4-й класс миллиарды

1-й разряд единицы миллиардов

2-й разряд десятки миллиардов

3-й разряд сотни миллиардов

Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.

Основные свойства натуральных чисел.

  • Коммутативность сложения. a + b = b + a
  • Коммутативность умножения. ab = ba
  • Ассоциативность сложения. (a + b) + c = a + (b + c)
  • Ассоциативность умножения.
  • Дистрибутивность умножения относительно сложения:

Действия над натуральными числами.

4. Деление натуральных чисел - операция, обратная операции умножения.

Если b ∙ с = а , то

Формулы для деления:

а: 1 = a

a: a = 1, a ≠ 0

0: a = 0, a ≠ 0

(а ∙ b) : c = (a:c) ∙ b

(а ∙ b) : c = (b:c) ∙ a

Числовые выражения и числовые равенства.

Запись, где числа соединяются знаками действий, является числовым выражением .

Например, 10∙3+4; (60-2∙5):10.

Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами . У равенства есть левая и правая части.

Порядок выполнения арифметических действий.

Сложение и вычитание чисел - это действия первой степени, а умножение и деление - это действия второй степени.

Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.

Когда выражения состоят из действия только первой и второй степени, то сначала выполняют действия второй степени, а потом - действия первой степени.

Когда в выражении есть скобки - сначала выполняют действия в скобках.

Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.

Приводится определение числовой последовательности. Рассмотрены примеры неограниченно возрастающих, сходящихся и расходящихся последовательностей. Рассмотрена последовательность, содержащая все рациональные числа.

Определение .
Числовой последовательностью { x n } называется закон (правило), согласно которому, каждому натуральному числу n = 1, 2, 3, . . . ставится в соответствие некоторое число x n .
Элемент x n называют n-м членом или элементом последовательности.

Последовательность обозначается в виде n -го члена, заключенного в фигурные скобки: . Также возможны следующие обозначения: . В них явно указывается, что индекс n принадлежит множеству натуральных чисел и сама последовательность имеет бесконечное число членов. Вот несколько примеров последовательностей:
, , .

Другими словами числовая последовательность - это функция, областью определения которой является множество натуральных чисел. Число элементов последовательности бесконечно. Среди элементов могут встречаться и члены, имеющие одинаковые значения. Также последовательность можно рассматривать как нумерованное множество чисел, состоящее из бесконечного числа членов.

Главным образом нас будет интересовать вопрос - как ведут себя последовательности, при n стремящемся к бесконечности: . Этот материал излагается в разделе Предел последовательности – основные теоремы и свойства . А здесь мы рассмотрим несколько примеров последовательностей.

Примеры последовательностей

Примеры неограниченно возрастающих последовательностей

Рассмотрим последовательность . Общий член этой последовательности . Выпишем несколько первых членов:
.
Видно, что с ростом номера n , элементы неограниченно возрастают в сторону положительных значений. Можно сказать, что эта последовательность стремится к : при .

Теперь рассмотрим последовательность с общим членом . Вот ее несколько первых членов:
.
С ростом номера n , элементы этой последовательности неограниченно возрастают по абсолютной величине, но не имеют постоянного знака. То есть эта последовательность стремится к : при .

Примеры последовательностей, сходящихся к конечному числу

Рассмотрим последовательность . Ее общий член . Первые члены имеют следующий вид:
.
Видно, что с ростом номера n , элементы этой последовательности приближаются к своему предельному значению a = 0 : при . Так что каждый последующий член ближе к нулю, чем предыдущий. В каком-то смысле можно считать, что есть приближенное значение для числа a = 0 с погрешностью . Ясно, что с ростом n эта погрешность стремится к нулю, то есть выбором n , погрешность можно сделать сколь угодно малой. Причем для любой заданной погрешности ε > 0 можно указать такой номер N , что для всех элементов с номерами большими чем N : , отклонение числа от предельного значения a не превзойдет погрешности ε : .

Далее рассмотрим последовательность . Ее общий член . Вот несколько ее первых членов:
.
В этой последовательности члены с четными номерами равны нулю. Члены с нечетными n равны . Поэтому, с ростом n , их величины приближаются к предельному значению a = 0 . Это следует также из того, что
.
Также как и в предыдущем примере, мы можем указать сколь угодно малую погрешность ε > 0 , для которой можно найти такой номер N , что элементы, с номерами большими чем N , будут отклоняться от предельного значения a = 0 на величину, не превышающую заданной погрешности. Поэтому эта последовательность сходится к значению a = 0 : при .

Примеры расходящихся последовательностей

Рассмотрим последовательность со следующим общим членом:

Вот ее первые члены:


.
Видно, что члены с четными номерами:
,
сходятся к значению a 1 = 0 . Члены с нечетными номерами:
,
сходятся к значению a 2 = 2 . Сама же последовательность, с ростом n , не сходится ни к какому значению.

Последовательность с членами, распределенными в интервале (0;1)

Теперь рассмотрим более интересную последовательность. На числовой прямой возьмем отрезок . Поделим его пополам. Получим два отрезка. Пусть
.
Каждый из отрезков снова поделим пополам. Получим четыре отрезка. Пусть
.
Каждый отрезок снова поделим пополам. Возьмем


.
И так далее.

В результате получим последовательность, элементы которой распределены в открытом интервале (0; 1) . Какую бы мы ни взяли точку из закрытого интервала , мы всегда можем найти члены последовательности, которые окажутся сколь угодно близко к этой точке, или совпадают с ней.

Тогда из исходной последовательности можно выделить такую подпоследовательность, которая будет сходиться к произвольной точке из интервала . То есть с ростом номера n , члены подпоследовательности будут все ближе подходить к наперед выбранной точке.

Например, для точки a = 0 можно выбрать следующую подпоследовательность:
.
= 0 .

Для точки a = 1 выберем такую подпоследовательность:
.
Члены этой подпоследовательности сходятся к значению a = 1 .

Поскольку существуют подпоследовательности, сходящиеся к различным значениям, то сама исходная последовательность не сходится ни к какому числу.

Последовательность, содержащая все рациональные числа

Теперь построим последовательность, которая содержит все рациональные числа. Причем каждое рациональное число будет входить в такую последовательность бесконечное число раз.

Рациональное число r можно представить в следующем виде:
,
где - целое; - натуральное.
Нам нужно каждому натуральному числу n поставить в соответствие пару чисел p и q так, чтобы любая пара p и q входила в нашу последовательность.

Для этого на плоскости проводим оси p и q . Проводим линии сетки через целые значения p и q . Тогда каждый узел этой сетки с будет соответствовать рациональному числу. Все множество рациональных чисел будет представлено множеством узлов. Нам нужно найти способ пронумеровать все узлы, чтобы не пропустить ни один узел. Это легко сделать, если нумеровать узлы по квадратам, центры которых расположены в точке (0; 0) (см. рисунок). При этом нижние части квадратов с q < 1 нам не нужны. Поэтому они не отображены на рисунке.


Итак, для верхней стороны первого квадрата имеем:
.
Далее нумеруем верхнюю часть следующего квадрата:

.
Нумеруем верхнюю часть следующего квадрата:

.
И так далее.

Таким способом мы получаем последовательность, содержащую все рациональные числа. Можно заметить, что любое рациональное число входит в эту последовательность бесконечное число раз. Действительно, наряду с узлом , в эту последовательность также будут входить узлы , где - натуральное число. Но все эти узлы соответствуют одному и тому же рациональному числу .

Тогда из построенной нами последовательности, мы можем выделить подпоследовательность (имеющую бесконечное число элементов), все элементы которой равны наперед заданному рациональному числу. Поскольку построенная нами последовательность имеет подпоследовательности, сходящиеся к различным числам, то последовательность не сходится ни к какому числу.

Заключение

Здесь мы дали точное определение числовой последовательности. Также мы затронули вопрос о ее сходимости, основываясь на интуитивных представлениях. Точное определение сходимости рассматривается на странице Определение предела последовательности . Связанные с этим свойства и теоремы изложены на странице