Ds18b20 подключение к arduino без резистора. Считываем показания датчика DS18B20 (DS18S20)


DS18B20 подключение к Arduino — это фантастический датчик определения температурной составляющей с цифровым интерфейсом в своем составе — следовательно он не требует выполнения калибровки. Поэтому, такие устройства можно подключить одновременно в множественном количестве к одному контакту arduino. Такую возможность предоставляет оригинальный адрес, который был запрограммирован в схему DS18B20 при его изготовлении.

Вот так выглядит эта «супер-сложная» схема DS18B20 подключение к Arduino:

Здесь нужен всего один резистор и больше ничего))). К тому же здесь отсутствуют необходимость в калибровании температуры, а также исключаются возможные неточности при выполнении сборки. Питающее напряжение возможно подавать в диапазоне от 3v до 5v. Все элементарно. А отображение температурного значения - три строки)). Ниже показан образец, все досконально и четко расписано.

Вот отсюда нужно скачать библиотеку:

Тут все аналогично, код в образце Multiple.pde. Разница лишь в том, что применено некоторое количество переменных величин имеющих адреса термометров — следовательно на три датчика три переменные величины со своим адресом и аналогичный код для поиска:

If (!sensors.getAddress(Thermometer1, 0)) Serial.println("Не найден адрес датчика 0"); if (!sensors.getAddress(Thermometer2, 1)) Serial.println("Не найден адрес датчика 1"); if (!sensors.getAddress(Thermometer3, 2)) Serial.println("Не найден адрес датчика 2");

Естественно и вывода температурных составляющих также по три.

В предыдущих уроках мы уже работали с датчиком температуры и влажности DHT11, а также с терморезистором. На этот раз попробуем разобраться ещё с одним популярным датчиком измеряющим температуру — DS18B20. Это устройство позволяет измерять температуру в диапазоне от –55°C до +125°C с точностью ±0.5°C (при температуре от –10°C до +85°C). Питаться DS18B20 может как от 3.3, так и от 5 Вольт. Сам по себе датчик — это микросхема, которая может встречаться в разных корпусах: Также популярными являются готовые модули, на которых размещен датчик, резистор подтяжки и разъем.
Другой вариант — датчик в герметичной стальной капсуле с проводом:

1. Подключение модуля DS18B20-ROC к Ардуино

В этом уроке мы будем работать с модулем датчика температуры, разработанным в RobotClass. Подключать мы его будем к контроллеру Ардуино Уно. Как и DHT11, датчик DS18B20 использует однопроводную шину (1-wire) для обмена данными с контроллером. Так что нам потребуется всего три провода чтобы подключить датчик к Ардуино. Принципиальная схема Внешний вид макета
Примечание. В случае использования не модуля, а отдельной микросхемы, необходимо вывод микросхемы OUT соединить с контактом питания через резистор 4,7 КОм. В указанном выше модуле этот резистор уже установлен.

2. Программа для получения данных с датчика DS18B20

Напишем программу, которая будет каждую секунду считывать показания температуры с датчика и выводить их в COM-порт. #include OneWire ds(2); void setup() { Serial.begin(9600); } void loop() { byte i; byte data; byte addr; float celsius; // поиск адреса датчика if (!ds.search(addr)) { ds.reset_search(); delay(250); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // команда на измерение температуры delay(1000); ds.reset(); ds.select(addr); ds.write(0xBE); // команда на начало чтения измеренной температуры // считываем показания температуры из внутренней памяти датчика for (i = 0; i < 9; i++) { data[i] = ds.read(); } int16_t raw = (data << 8) | data; // датчик может быть настроен на разную точность, выясняем её byte cfg = (data & 0x60); if (cfg == 0x00) raw = raw & ~7; // точность 9-разрядов, 93,75 мс else if (cfg == 0x20) raw = raw & ~3; // точность 10-разрядов, 187,5 мс else if (cfg == 0x40) raw = raw & ~1; // точность 11-разрядов, 375 мс // преобразование показаний датчика в градусы Цельсия celsius = (float)raw / 16.0; Serial.print("t="); Serial.println(celsius); } Процедура на первый взгляд может показать совершенно непонятной. На самом деле, все эти 0xBE, 0x44 и т.п. взяты из спецификации к датчику. Для удобства мы можем всю процедуру вычисления выделить в отдельную функцию или даже в отдельный модуль. Загружаем программу на Ардуино и запускаем монитор COM-порта. В окне терминала мы должны увидеть данные о температуре, обновляющиеся раз в секунду: t=23.15 t=23.47 t=23.32 Вот и всё, датчик работает!

Заключение

С помощью датчика температуры можно сделать простейшую систему автоматической вентиляции в квартире или в теплице. Достаточно добавить в программу оператор условия, который будет проверять достижение температурой определенного значения и включать вентилятор с помощью реле. Подобным же образом мы работали

В ассортименте нашего магазина появился датчик температуры DALLAS 18B20 во влагозащищенном корпусе с широким диапазоном измеряемых температур от -55 до +125°С. Данные о влагозащищенности и максимальной температуре в +125 градусов сразу натолкнули на мысли об экстремальном тестировании в кипящей воде. Этим мы и займемся.

Компоненты для повторения (купить в Китае):

Данный датчик работает по шине 1-Wire.

Каждое такое устройство содержит уникальный 64-битный "ROM" код, состоящий из 8 битов, определяющих код серии, 48 бит уникального номера и 8 бит помехоустойчивого CRC кода.

Информация об измеренной температуре хранится в оперативной памяти датчика, которая состоит из 9 байт.

1 и 2 байты хранят информацию о температуре.

3 и 4 байты хранят соответственно верхний и нижний пределы температуры.

5 и 6 байты зарезервированы.

7 и 8 байты используются для сверхточного измерения температуры.

9 байт хранит помехоустойчивый CRC код предыдущих 8 байт.

Основные команды, используемые при работе с библиотекой:

search(addressArray)

Выполняет поиск следующего 1-Wire устройства, если устройство найдено, то в 8 байтный массив addressArray записывается его ROM код, иначе возвращает false.

reset_search()

Выполняет новый поиск с первого устройства.

reset()

Выполняет сброс шины, необходимо перед связью с датчиком.

select(addressArray)

Выполняет выбор устройства после сброса, передается ROM Код устройства.

write(byte)

Передает информационный байт на устройство

write(byte, 1)

read()

Считывает информационный байт с устройства

crc8(dataArray, length)

Вычисляет CRC код байтов из массива dataArray, длиной length

При помощи команды write, мы можем передавать управляющие команды на датчик в виде байтов, рассмотрим основные из них:

0x44 - провести измерение температуры и записать данные в оперативную память

0x4E - записать 3 байта в 3й, 4й и 5й байты оперативной памяти

0x48 - скопировать 3й и 4й байты оперативной памяти в EEPROM

0xB8 - скопировать данные из EEPROM В 3й и 4й байты оперативной памяти

Подключение к Arduino

Из датчика выходят три провода:

Красный: "+" питания.

Черный: "-" питания

Белый: Вывод выходного сигнала

Подключение датчика:

Красный: на + 5 Вольт Arduino.

Черный на любой из GND пинов--- Arduino.

Белый на любый цифровой вход Arduino (в примере D10).

Для работы датчика необходимо соединить сигнальный провод с проводом питания резистором номиналом 4.7 кОм.

Для начала рассмотрим самый полезный пример для работы с датчиком - вывод показаний температуры в монитор порта.

Пример программного кода

#include OneWire ds(10); // подключен к 10 пину (резистор на 4.7к обязателен) void setup(void) { Serial.begin(9600); } void loop(void) { byte i; byte present = 0; byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC is not valid!"); return; } Serial.println(); // the first ROM byte indicates which chip switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Device is not a DS18x20 family device."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // начало коммуникации delay(1000); present = ds.reset(); ds.select(addr); ds.write(0xBE); // читаем значение Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // смотрим 9 байтов data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Преобразуем получненный данные в температуру // Используем int16_t тип, т.к. он равен 16 битам // даже при компиляции под 32-х битный процессор int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; if (data == 0x10) { raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); if (cfg == 0x00) raw = raw & ~7; else if (cfg == 0x20) raw = raw & ~3; else if (cfg == 0x40) raw = raw & ~1; } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); }

Dallas18B20 экстремальное тестирование

Как уже говорилось, мы решили устроить датчику экстремальное тестирование, но просто опускать датчик в кипяток это не интересно. Поместим датчик в стакан и прокипятим. Для наглядности в монитор порта будут выводиться значения температуры. На прикрепленном ниже видео видно плавное нарастание температуры. Хочется отметить что температура воды при нормальном атмосферном давлении не может быть выше 100 °С. При тестировании датчика в кипящей воде, максимально зафиксированная нами температура составила 99.87°С. Тест можно считать успешным.

В схему было добавлено реле, для автоматического отключения кипятильника при температуре 99.5°С. Чтобы не резать провода на кипятильнике подключим через розетку, внутри которой находится вышеупомянутое реле.

Важно

Датчик температуры находится в металлическом корпусе, переход от металла на кабель заизолирован термоусадочной трубкой. На металле трубка прилегает очень плотно, на кабеле слабее, через это место может, хоть вероятность и мала, просочиться вода. С целью избежания данной ситуации мы советуем не погружать датчик в воду целиком. Если у вас все таки есть такая необходимость, мы рекомендуем заизолировать данный участок более тщательно.

Код примера

#include OneWire ds(10); // подключен к 10 пину (резистор на 4.7к обязателен) void setup(void) { Serial.begin(9600); pinMode(3, OUTPUT); // Включаем кипятильник digitalWrite(3, LOW); } void loop(void) { byte i; byte present = 0; byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC is not valid!"); return; } Serial.println(); // the first ROM byte indicates which chip switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Device is not a DS18x20 family device."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 1); // начало коммуникации delay(1000); present = ds.reset(); ds.select(addr); ds.write(0xBE); // читаем значение Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // смотрим 9 байтов data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Преобразуем получненный данные в температуру // Используем int16_t тип, т.к. он равен 16 битам // даже при компиляции под 32-х битный процессор int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; if (data == 0x10) { raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); if (cfg == 0x00) raw = raw & ~7; else if (cfg == 0x20) raw = raw & ~3; else if (cfg == 0x40) raw = raw & ~1; } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); // Если температура достигает температуры кипения (с погрешностью), отключаем кипятильник if (celsius > 99.5) { digitalWrite(3, HIGH); } }

#include

OneWire ds(10); // Подключаем датчик к 10 цифровому пину

void setup(void) {
Serial.begin(9600);
pinMode(3, OUTPUT);
// Включаем кипятильник
digitalWrite(3, LOW);
}

void loop(void) {
byte i;
byte type_s;
byte data;
byte addr;
float celsius, fahrenheit;

// Ищем алрес датчика
if (!ds.search(addr)) {
Serial.println("No more addresses.");
Serial.println();
ds.reset_search();
delay(250);
return;
}

// Проверяем не было ли помех при передаче
if (OneWire::crc8(addr, 7) != addr) {
Serial.println("CRC is not valid!");
return;
}
Serial.println();

// Определяем серию датчика
switch (addr) {
case 0x10:
Serial.println(" Chip = DS18S20");
type_s = 1;
break;
case 0x28:
Serial.println(" Chip = DS18B20");
type_s = 0;
break;
case 0x22:
Serial.println(" Chip = DS1822");
type_s = 0;
break;
default:
Serial.println("Device is not a DS18x20 family device.");
return;
}

ds.reset();
ds.select(addr);
ds.write(0xBE); // Считываем оперативную память датчика

for (i = 0; i < 9; i++) {
data[i] = ds.read(); // Заполняем массив считанными данными
}

// Данные о температуре содержатся в первых двух байтах, переведем их в одно значение и преобразуем в шестнадцатиразрядное число
int16_t raw = (data << 8) | data;
if (type_s) {
raw = raw << 3;
if (data == 0x10) {
raw = (raw & 0xFFF0) + 12 - data;
}
}
else {
byte cfg = (data & 0x60);
if (cfg == 0x00) raw = raw & ~7;
else if (cfg == 0x20) raw = raw & ~3;
else if (cfg == 0x40) raw = raw & ~1;
}
celsius = (float)raw / 16.0;
fahrenheit = celsius * 1.8 + 32.0;
Serial.print("Temp = ");
Serial.print(celsius);
Serial.print(" C, ");
Serial.print(fahrenheit);
Serial.println(" F");

// Если температура достигает температуры кипения (с погрешностью), отключаем кипятильник
if (celsius > 99.5)
{
digitalWrite(3, HIGH);
}
}

Купить в России

Датчик температуры в Arduino – один из самых распространенных видов сенсоров. Разработчику проектов с термометрами на Arduino доступно множество разных вариантов, отличающихся по принципу действия, точности, конструктивному исполнению. Цифровой датчик DS18B20 является одним из наиболее популярных температурных датчиков, часто он используется в водонепроницаемом корпусе для измерения температуры воды или других жидкостей. В этой статье вы найдете описание датчика ds18b20 на русском, мы вместе рассмотрим особенности подключения к ардуино, принцип работы датчика, описание библиотек и скетчей.

DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.

Температурный датчик DS18B20 имеет разнообразные виды корпуса. Можно выбрать один из трех – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Последний является наиболее распространенным и изготавливается в специальном влагозащитном корпусе, так что его смело можно использовать под водой. У каждого датчика есть 3 контакта. Для корпуса TO-92 нужно смотреть на цвет проводов: черный – земля, красный – питание и белый/желтый/синий – сигнал. В интернет-магазинах можно купить готовый модуль DS18B20.

Где купить датчик

Естественно, что DS18B20 дешевле всего купить на Алиэкспрессе, хотя он продается и в любых специализированных российских интернет-магазинах с ардуино. Приведем несколько ссылок для примера:

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Подключение DS18B20 к Arduino

DS18B20 является цифровым датчиком. Цифровые датчики передают значение измеряемой температуры в виде определенного двоичного кода, который поступает на цифровые или аналоговые пины ардуино и затем декодируется. Коды могут быть самыми разными, ds18b20 работает по протоколу данных 1-Wire. Мы не будем вдаваться в подробности этого цифрового протокола, укажем лишь необходимый минимум для понимания принципов взаимодействия.

Обмен информацией в 1-Wire происходит благодаря следующим операциям:

  • Инициализация – определение последовательности сигналов, с которых начинается измерение и другие операции. Ведущее устройство подает импульс сброса, после этого датчик должен подать импульс присутствия, сообщающий о готовности к выполнению операции.
  • Запись данных – происходит передача байта данных в датчик.
  • Чтение данных – происходит прием байта из датчика.

Для работы с датчиком нам понадобится программное обеспечение:

  • Arduino IDE;
  • Библиотека OneWire, если используется несколько датчиков на шине, можно использовать библиотеку DallasTemperature. Она будет работать поверх OneWire.

Из оборудования понадобятся:

  • Один или несколько датчиков DS18B20;
  • Микроконтроллер Ардуино;
  • Коннекторы;
  • Резистор на 4,7 кОм (в случае подключения одного датчика пойдет резистор номиналом от 4 до 10K);
  • Монтажная плата;
  • USB-кабель для подключения к компьютеру.

К плате Ардуино UNO датчик подключается просто: GND с термодатчика присоединяется к GND Ардуино, Vdd подключается к 5V, Data – к любому цифровому пину.

Простейшая схема подключения цифрового датчика DS18B20 представлена на рисунке.

Алгоритм получения информации о температуре в скетче состоит из следующих этапов:

  • Определение адреса датчика, проверка его подключения.
  • На датчик подается команда с требованием прочитать температуру и выложить измеренное значение в регистр. Процедура происходит дольше остальных, на нее необходимо примерно 750 мс.
  • Подается команда на чтение информации из регистра и отправка полученного значения в «монитор порта»,
  • Если требуется, то производится конвертация в градусы Цельсия/Фаренгейта.

Пример простого скетча для DS18B20

Самый простой скетч для работы с цифровым датчиком выглядит следующим образом. (в скетче мы используем библиотеку OneWire, о которой поговорим подробнее чуть позже).

#include /* * Описание взаимодействия с цифровым датчиком ds18b20 * Подключение ds18b20 к ардуино через пин 8 */ OneWire ds(8); // Создаем объект OneWire для шины 1-Wire, с помощью которого будет осуществляться работа с датчиком void setup(){ Serial.begin(9600); } void loop(){ // Определяем температуру от датчика DS18b20 byte data; // Место для значения температуры ds.reset(); // Начинаем взаимодействие со сброса всех предыдущих команд и параметров ds.write(0xCC); // Даем датчику DS18b20 команду пропустить поиск по адресу. В нашем случае только одно устрйоство ds.write(0x44); // Даем датчику DS18b20 команду измерить температуру. Само значение температуры мы еще не получаем - датчик его положит во внутреннюю память delay(1000); // Микросхема измеряет температуру, а мы ждем. ds.reset(); // Теперь готовимся получить значение измеренной температуры ds.write(0xCC); ds.write(0xBE); // Просим передать нам значение регистров со значением температуры // Получаем и считываем ответ data = ds.read(); // Читаем младший байт значения температуры data = ds.read(); // А теперь старший // Формируем итоговое значение: // - сперва "склеиваем" значение, // - затем умножаем его на коэффициент, соответсвующий разрешающей способности (для 12 бит по умолчанию - это 0,0625) float temperature = ((data << 8) | data) * 0.0625; // Выводим полученное значение температуры в монитор порта Serial.println(temperature); }

Скетч для работы с датчиком ds18b20 без delay

Можно немного усложнить программу для ds18b20, чтобы избавиться от , тормозящей выполнение скетча.

#include OneWire ds(8); // Объект OneWire int temperature = 0; // Глобальная переменная для хранения значение температуры с датчика DS18B20 long lastUpdateTime = 0; // Переменная для хранения времени последнего считывания с датчика const int TEMP_UPDATE_TIME = 1000; // Определяем периодичность проверок void setup(){ Serial.begin(9600); } void loop(){ detectTemperature(); // Определяем температуру от датчика DS18b20 Serial.println(temperature); // Выводим полученное значение температуры // Т.к. переменная temperature имеет тип int, дробная часть будет просто отбрасываться } int detectTemperature(){ byte data; ds.reset(); ds.write(0xCC); ds.write(0x44); if (millis() - lastUpdateTime > TEMP_UPDATE_TIME) { lastUpdateTime = millis(); ds.reset(); ds.write(0xCC); ds.write(0xBE); data = ds.read(); data = ds.read(); // Формируем значение temperature = (data << 8) + data; temperature = temperature >> 4; } }

Библиотека DallasTemperature и DS18b20

В своих скетчах мы можем использовать библиотеку DallasTemperature, упрощающую некоторые аспекты работы с датчиком ds18b20 по 1-Wire. Пример скетча:

#include // Номер пина Arduino с подключенным датчиком #define PIN_DS18B20 8 // Создаем объект OneWire OneWire oneWire(PIN_DS18B20); // Создаем объект DallasTemperature для работы с сенсорами, передавая ему ссылку на объект для работы с 1-Wire. DallasTemperature dallasSensors(&oneWire); // Специальный объект для хранения адреса устройства DeviceAddress sensorAddress; void loop(void){ // Запрос на измерения датчиком температуры Serial.print("Измеряем температуру..."); dallasSensors.requestTemperatures(); // Просим ds18b20 собрать данные Serial.println("Выполнено"); // Запрос на получение сохраненного значения температуры printTemperature(sensorAddress); // Задержка для того, чтобы можно было что-то разобрать на экране delay(1000); } // Вспомогательная функция печати значения температуры для устрйоства void printTemperature(DeviceAddress deviceAddress){ float tempC = dallasSensors.getTempC(deviceAddress); Serial.print("Temp C: "); Serial.println(tempC); } // Вспомогательная функция для отображения адреса датчика ds18b20 void printAddress(DeviceAddress deviceAddress){ for (uint8_t i = 0; i < 8; i++) { if (deviceAddress[i] < 16) Serial.print("0"); Serial.print(deviceAddress[i], HEX); } }

Библиотека OneWire для работы с DS18B20

DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. . Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include

Все датчики DS18B20 подключаются параллельно, для них всех достаточно одного резистора. При помощи библиотеки OneWire можно одновременно считать все данные со всех датчиков. Если количество подключаемых датчиков более 10, нужно подобрать резистор с сопротивлением не более 1,6 кОм. Также для более точного измерения температуры нужно поставить дополнительный резистор на 100…120 Ом между выходом data на плате Ардуино и data на каждом датчике. Узнать, с какого датчика получено то или иное значение, можно с помощью уникального серийного 64-битного кода, который будет выдан в результате выполнения программы.

Для подключения температурных датчиков в нормальном режиме нужно использовать схему, представленную на рисунке.

Выводы

Микросхема Dallas DS18B20 является очень интересным устройством. Датчики температуры и термометры, созданные на ее основе, обладают приемлемыми для большинства задач характеристиками, развитым функционалом, относительно не дороги. Особенную популярность датчик DS18B20 снискал как влагозащищенное устройство для измерения температуры жидкостей.

За дополнительные возможности приходится платить относительной сложностью работы с датчиком. Для подключения DS18B20 нам обязательно понадобится резистор с номиналом около 5К. Для работы с датчиком в скетчах ардуино нужно установить дополнительную библиотеку и получить определенные навыки для работы с ней – там все не совсем тривиально. Впрочем, можно купить уже готовый модуль, а для скетча в большинстве случаев хватит простых примеров, приведенных в этой статье.

Так исторически сложилось, что на текущий момент одним из самых популярных цифровых температурных датчиков является датчик DS18B20 корпорации Dallas Semiconductor. Конечно же и мы не можем обойти его стороной.

Вся память DS18B20 включает в себя оперативную (SRAM) и энергонезависимую (EEPROM) память. В EEPROM хранятся регистры TH, TL и регистр конфигурации. Если функция тревожного сигнала не используется, то регистры TH и TL могут использоваться как регистры общего назначения. В режиме термостата TH содержит значение верхнего порога температуры, TL соответственно нижнего порога.

Кодинг.

Первым делом нам потребуется библиотека OneWire которая нам очень упростит жизнь. Скачать можно с GitHub или с нашего сайта .

Любое общение с датчиком начинается с команды Reset . То есть МК прижимает шину данных в состояние логический «0» на 480 µs, потом отпускает ее. Датчик отвечает на это сигналом присутствия, после чего мы отправляем команду Skip ROM (0xCC) . Тое сть обратимся ко всем датчика которые присутствуют на шине.

OneWire(uint8_t pin);

Конструктор, Pin – номер вывода, к которому подключен датчик.

uint8_t reset(void);

Инициализация операции на шине. С этой команды должна начинаться любая операция обмена данными. Возвращает:

  • 1 – если устройство подключено к шине (был ответный импульс присутствия);
  • 0 – если устройство отсутствует на шине (ответного импульса не было).
void write(uint8_t v, uint8_t power = 0);

Запись байта. Передает байт в устройство на шине.

Отправим команду 0x44 инициализации измерения температуры.

Пауза 1 сек . Ожидание на время, необходимое для выполнения датчиком преобразования температуры. Это время зависит от выбранной разрешающей способности датчика. Разрешение 12 бит установлено в датчике по умолчанию. Время преобразования для него – 750 мс.

Затем мы отправляем команду Reset , Skip ROM (0xCC) , а замет команду 0xBE чтения памяти датчика.

Вот и сам код из библиотеке:

#include // OneWire DS18S20, DS18B20, DS1822 Temperature Example // // http://www.pjrc.com/teensy/td_libs_OneWire.html // // The DallasTemperature library can do all this work for you! // http://milesburton.com/Dallas_Temperature_Control_Library OneWire ds(10); // датчик на выводе 10 (а резистор 4.7 K является необходимым) void setup(void) { Serial.begin(9600); } void loop(void) { byte i; byte present = 0; //переменные byte type_s; byte data; byte addr; float celsius, fahrenheit; if (!ds.search(addr)) { Serial.println("No more addresses."); Serial.println(); ds.reset_search(); delay(250); return; } Serial.print("ROM ="); for(i = 0; i < 8; i++) { Serial.write(" "); Serial.print(addr[i], HEX); } if (OneWire::crc8(addr, 7) != addr) { Serial.println("CRC недопустимый!"); return; } Serial.println(); // первый байт ROM указывает, какой чип (8 бит код чипа, 48 бит серийный номер, 8 бит CRC) switch (addr) { case 0x10: Serial.println(" Chip = DS18S20"); // or old DS1820 type_s = 1; break; case 0x28: Serial.println(" Chip = DS18B20"); type_s = 0; break; case 0x22: Serial.println(" Chip = DS1822"); type_s = 0; break; default: Serial.println("Не является устройством семейства DS18x20."); return; } ds.reset(); ds.select(addr); ds.write(0x44, 0); // старт преобразования с питание от внешнего источника. delay(1000); // ждем конца преобразования. // we might do a ds.depower() here, but the reset will take care of it. present = ds.reset(); ds.select(addr); ds.write(0xBE); // Читаем память. Serial.print(" Data = "); Serial.print(present, HEX); Serial.print(" "); for (i = 0; i < 9; i++) { // нам нужно 9 байт data[i] = ds.read(); Serial.print(data[i], HEX); Serial.print(" "); } Serial.print(" CRC="); Serial.print(OneWire::crc8(data, 8), HEX); Serial.println(); // Преобразование данных в фактическую температуру //поскольку результатом является 16-разрядное целое число со знаком // ранится в типе "int16_t", который всегда составляет 16 бит // даже при компиляции на 32-битном процессоре. int16_t raw = (data << 8) | data; if (type_s) { raw = raw << 3; // 9 бит разрешение по умолчанию у датчиков DS18S20 or old DS1820 if (data == 0x10) { // "количество остается" дает полное разрешение 12 бит raw = (raw & 0xFFF0) + 12 - data; } } else { byte cfg = (data & 0x60); // при более низком разрешении низкие биты не определены, поэтому давайте обнуляем их. if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms //// default is 12 bit resolution, 750 ms conversion time } celsius = (float)raw / 16.0; fahrenheit = celsius * 1.8 + 32.0; Serial.print(" Temperature = "); Serial.print(celsius); Serial.print(" Celsius, "); Serial.print(fahrenheit); Serial.println(" Fahrenheit"); }

Собственно это библиотека подходить для всех датчиков семейства DS18 (DS18B20, DS18S20, DS1820, DS1822) подключение не чем не отключаются. Ну а некоторые различия можно уже узнать из datesheet к ним.