Энергетические диаграммы трансформатора. Потери и КПД трансформатора


Министерство образования Российской Федерации

Реферат

КПД трансформатора. Устройство и работа

Выполнил:

Нижний Новгород 2004 год

Введение

Трансформаторы - один из основных видов электротехнического оборудования. Благодаря им можно получать электрическую энергию, при наиболее удобном напряжении, передавать ее с минимальными потерями напряжения и использовать при напрядении, рассчитанном на любого возможного потребителя. Передача электрической энергии от места производства до потребителя требует создания многих повышающих и понижающих напряжение трансформаторов. В зависимости от параметров электроэнергии, необходимой тем или иным потребителям, трансформаторы изготавливают на различные мощности и напряжения. Существуют трансформаторы мощностью от нескольких вотльт-ампер до 1 200 000 кВ*А и более.

Для транспортировки электроэнергии построены десятки и сотни тысяч километров высоковольтных линий электропередачи напряжением 110, 220, 330, 500, 700, 1150 и 1500 кВ.

Для обеспечения этих линий элетропередачи, разработанны и освоены мощные трансформаторы и автотрансформаторы; создане крупные серии распределительных трансформаторов общего назначения различной мощности и назначения; специальные трансформаторы для электротермических преобразовательных и других установок; пусковые, передвижные, регулировочные, испытательные и другие специальные трансформаторы.

Устройство

Трансформаторы бывают: повышающие, понижающие однофазные, трех и многофазные. Силовые, измерительные, испытательные.

Номинальные данные щитка: S H , квт, U 1 H /U 2 H , I 1 H /I 2 H , l/l, ?.

Активными элементами трансформатора являются

1. магнитопровод

2. обмотки

Магнитопроводы бывают:

1. Броневые

2. Стержневые


Магнитопровод с обмоткой помещается в бак с трансформатором маслом, которое служит для изоляции и охлаждения

Основные параметры трансформаторов

Генераторы электрического тока по техническим причинам, нельзя изготовлять на очеь большие напряжени, даже крупные из них имеют напряжения не более 24 кВ, а такое напряжение можно использовать только на малых расстояниях от электростанции.

Чтобы передача электрической энергии(электроэнергии) на многие сотни и тысячи километров стали выгодной, необходимо значительно большее напряжение 500, 750 кВ и более. Для этой цели и служит трансформатор - электомагнитное устройство с двумя или более обмотками, предназначенное для преобразования с помощью элетромагнитной индукции переменного тока одного напряжения в переменный ток другого(или других) напряжений. Обмотка трансформатора, к которой подводиться энергия преобразуемого перемнного тока, называется первичной, а обмотка от которой отводится энергия преобразованного переменного тока - вторичной.Существут трансформаторы у которых помимо первичной и вторичной обмоток, существует третья обмотка с промежуточным напряжением.

Обмотки трансформаторов, к которым подводится энергия преобразуемого или отводится энергия преобразованного переменного тока, нахывают основными, напрмер, первичная и вторичная обмотки трансформатора. Кроме основных, у трансформатора могут быть и другие обмотки, не связанные непосредственно с приемом или отдачей энергии преобразованного переменного тока, которые называют вспомогательными. Различают Различают основные обмотки трансформатора высшего(ВН), низшего(НН) и среднего (СН) напряжений.

Обмотка ВН имеет наибольшее номинальное напаряжение по сравнению с другими основными обмотками трансформатора, Обмотка НН - наименьшее номинальное напряжение, а обмотка СН - номинальное напряжение, являющееся промежуточным между ВН и НН.

Трансформатор у которого первичной обмоткой называется НН - называют повышающим. В конце линии передач, где начинаеться распределение энергии, устанавливают трансформаторы, снижающие напряжение линнии до напряжений, необходимых потребителю. Первичной в таких трансформаторах служит обмотка ВН, а трансформаторы называются понижающими. Таким образом, в зависимости от назначения повышать или понижать, напряжение первичной обмотки одного и того же трансформатора может быть обмотка НН или ВН.

Коэффициент полезного действия трансформатора

Преобразование электрической энергии в трансформаторе сопровождается потерями энергии на нагрев сердечника и обмоток. Уравнение баланса мощностей трансформатора имеет вид:


Потери в меди первичной обмотки,

Потери в стали трансформатора,


Величина


и назвать ее потерями в меди трансформатора, то КПД трансформатора можно выразить так

Потери в стали определяются величиной и частотой изменения магнитного потока в сердечнике трансформатора, а так как поток почти не зависит от нагрузки, то потери в стали остаются почти постоянными и равными потерям в режиме ХХ

Поскольку потери в меди обмотки пропорциональны квадрату действующего значения тока, через нее протекающего, последние могут быть определены из упрощенной схемы замещения трансформатора (рис 2-) в режиме КЗ.


Активную мощность в нагрузке трансформатора можно вычислить по формуле:


Анализ полученного выражения показывает, что КПД неоднозначно зависит от коэффициента нагрузки b и является функцией характера нагрузки что иллюстрируется кривыми, приведенными на рис. 6




При b =0, h =0. С ростом отдаваемой мощности h увеличивается, т.к. в энергетическом балансе уменьшается удельное значение потерь в стали, имеющих приблизительно постоянное значение. При некотором значении КПД достигает максимума, после чего начинает уменьшаться с ростом тока нагрузки. Причиной этого является увеличение потерь в меди, возрастающих пропорционально квадрату тока (или), в то время как полезная мощность растет пропорционально b. Значение можно получить из условия.



Следовательно КПД имеет максимум при такой нагрузке, при которой потери в меди трансформатора равны потерям в стали. Для трансформаторов большей мощности

0,5 - 0,7, при этом =0,995. Трансформаторы малой мощности рассчитывается как, чтобы =1, тогда =0,7 – 0,9. При уменьшении величины КПД уменьшается, т.к. возрастают токи и, при которых трансформатор имеет заданную мощность.

Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторич­ной. Схема устройства трансформатора с двумя обмотками при­ведена на рисунке 2,

Список используемой литературы.

1. Китунович Ф.Г.

Электротехника.

3-е изд., переработанное и дополненное.

Минск. «Высш. Школа», 1991.

2. Евдокимов Ф. Е.

Теоретические основы электротехники.

Изд. 4-е, перераб. и доп. Учебник для энергетич.

и электротехнич. специальностей техникумов.

М. «Высш. Школа», 1975.

3. Касаткин А.С.

Основы электротехники.

М.-Л., изд-во «Энергия», 1966.

4. Касаткин А.С. Немцов М.В.

Электротехника: Учеб. пособие для вузов.-

4-е изд., перераб.- М.: Энергоатомиздат, 1983.-

Министерство образования Российской Федерации

Реферат

КПД трансформатора. Устройство и работа

Выполнил:

Нижний Новгород 2004 год

Введение

Трансформаторы - один из основных видов электротехнического оборудования. Благодаря им можно получать электрическую энергию, при наиболее удобном напряжении, передавать ее с минимальными потерями напряжения и использовать при напрядении, рассчитанном на любого возможного потребителя. Передача электрической энергии от места производства до потребителя требует создания многих повышающих и понижающих напряжение трансформаторов. В зависимости от параметров электроэнергии, необходимой тем или иным потребителям, трансформаторы изготавливают на различные мощности и напряжения. Существуют трансформаторы мощностью от нескольких вотльт-ампер до 1 200 000 кВ*А и более.

Для транспортировки электроэнергии построены десятки и сотни тысяч километров высоковольтных линий электропередачи напряжением 110, 220, 330, 500, 700, 1150 и 1500 кВ.

Для обеспечения этих линий элетропередачи, разработанны и освоены мощные трансформаторы и автотрансформаторы; создане крупные серии распределительных трансформаторов общего назначения различной мощности и назначения; специальные трансформаторы для электротермических преобразовательных и других установок; пусковые, передвижные, регулировочные, испытательные и другие специальные трансформаторы.

Устройство

Трансформатор состоит из замкнутого железного сердечника, на который надеты две (иногда и более) катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной, подключается к источнику переменного напряжения. Вторая обмотка, к которой присоединяют «нагрузку», т. е. приборы и устройства, потребляющие электроэнергию, называется вторич­ной. Схема устройства трансформатора с двумя обмотками при­ведена на рисунке 2,

Трансформаторы бывают: повышающие, понижающие однофазные, трех и многофазные. Силовые, измерительные, испытательные.

Номинальные данные щитка: S H , квт, U 1 H /U 2 H , I 1 H /I 2 H , l/l, ?.

Активными элементами трансформатора являются

1. магнитопровод

2. обмотки

Магнитопроводы бывают:

1. Броневые

2. Стержневые


Магнитопровод с обмоткой помещается в бак с трансформатором маслом, которое служит для изоляции и охлаждения

Основные параметры трансформаторов

Генераторы электрического тока по техническим причинам, нельзя изготовлять на очеь большие напряжени, даже крупные из них имеют напряжения не более 24 кВ, а такое напряжение можно использовать только на малых расстояниях от электростанции.

Чтобы передача электрической энергии(электроэнергии) на многие сотни и тысячи километров стали выгодной, необходимо значительно большее напряжение 500, 750 кВ и более. Для этой цели и служит трансформатор - электомагнитное устройство с двумя или более обмотками, предназначенное для преобразования с помощью элетромагнитной индукции переменного тока одного напряжения в переменный ток другого(или других) напряжений. Обмотка трансформатора, к которой подводиться энергия преобразуемого перемнного тока, называется первичной, а обмотка от которой отводится энергия преобразованного переменного тока - вторичной.Существут трансформаторы у которых помимо первичной и вторичной обмоток, существует третья обмотка с промежуточным напряжением.

Обмотки трансформаторов, к которым подводится энергия преобразуемого или отводится энергия преобразованного переменного тока, нахывают основными, напрмер, первичная и вторичная обмотки трансформатора. Кроме основных, у трансформатора могут быть и другие обмотки, не связанные непосредственно с приемом или отдачей энергии преобразованного переменного тока, которые называют вспомогательными. Различают Различают основные обмотки трансформатора высшего(ВН), низшего(НН) и среднего (СН) напряжений.

Обмотка ВН имеет наибольшее номинальное напаряжение по сравнению с другими основными обмотками трансформатора, Обмотка НН - наименьшее номинальное напряжение, а обмотка СН - номинальное напряжение, являющееся промежуточным между ВН и НН.

Трансформатор у которого первичной обмоткой называется НН - называют повышающим. В конце линии передач, где начинаеться распределение энергии, устанавливают трансформаторы, снижающие напряжение линнии до напряжений, необходимых потребителю. Первичной в таких трансформаторах служит обмотка ВН, а трансформаторы называются понижающими. Таким образом, в зависимости от назначения повышать или понижать, напряжение первичной обмотки одного и того же трансформатора может быть обмотка НН или ВН.

Коэффициент полезного действия трансформатора

Преобразование электрической энергии в трансформаторе сопровождается потерями энергии на нагрев сердечника и обмоток. Уравнение баланса мощностей трансформатора имеет вид:


Потери в меди первичной обмотки,

- потери в стали трансформатора,

Величина


носит названия коэффициента полезного действия трансформатора.

При трансформации электрической энергии часть ее расходуется на покрытие потерь, которые разделяют на электрические и магнитные. Все потери носят активный характер.

Электрические потери обусловлены нагревом обмоток трансформатора при протекании по ним электрического тока и определяются суммой электрических потерь в первичной и вторичной обмотках:

,
где – число фаз в обмотках трансформатора (обычно 1 или 3); – потери короткого замыкания при номинальной нагрузке.

Электрические потери называют переменными , поскольку они зависят от тока нагрузки (пропорциональны квадрату).

Магнитные потери возникают в магнитопроводе трансформатора из-за наличия в нем переменного магнитного потока. Этот поток вызывает в магнитопроводе два вида потерь: потери от вихревых токов в стали магнитопровода и потери от гистерезиса (перемагничивания) , связанные с затратой энергии на уничтожение остаточного магнетизма в ферромагнитном материале магнитопровода:

.

Потери на гистерезис прямопропорциональны частоте перемагничивания (), а потери на вихревые токи – ее квадрату (). Суммарные магнитные потери принято считать пропорциональными частоте в степени 1,3, т.е. . Поскольку частота тока постоянна, а величина магнитного потока при нагрузке, не превышающей номинальную, практически не меняется, то магнитные потери считают постоянными , т.е. не зависящими от нагрузки. По этой причине магнитные потери практически равны потерям холостого хода .

Коэффициент полезного действия трансформатора – отношение активной мощности на выходе вторичной обмотки (полезная мощность) к активной мощности на входе первичной обмотки (подводимая мощность):

,
где – сумма потерь.

Активная мощность на выходе вторичной обмотки трансформатора:

,
где – количество фаз трансформатора; и – фазные напряжения и токи; – коэффициент мощности нагрузки; – коэффициент нагрузки.

Номинальная мощность трансформатора:

.
В трехфазном трансформаторе

,
где и – номинальные (линейные) напряжения и токи; и – номинальные фазные напряжения и токи.

Учитывая зависимость активной мощности на выходе трансформатора и потерь от нагрузки, получим выражение для расчета КПД:

или .
КПД трансформатора зависит как от величины нагрузки , так и от ее характера (), см. рисунок 1.18. Максимальное значение КПД соответствует нагрузке , при которой магнитные потери равны электрическим (), откуда


Рис. 1.18. Зависимость магнитных, электрических потерь и КПД от относительного вторичного тока нагрузки.

В современных силовых трансформаторах и максимальное значение КПД соответствует нагрузке .

Автотрансформаторы

Автотрансформатор – это трансформатор, в котором кроме магнитной имеется электрическая связь между первичной и вторичной обмотками. Префикс «авто » (греч. «сам ») означает, что в автотрансформаторе часть обмотки действует одновременно как первичная и как вторичная обмотка трансформатора.

На рисунке 1.19 показана автотрансформаторная схема включения трансформатора, предназначенная для передачи электрической энергии из входной сети с напряжением U в выходную сеть с напряжением .


Рис. 1.19. Принципиальные схемы однофазного и трехфазного повышающего автотрансформатора, зависимость значений мощностей и от коэффициента трансформации.

В схеме используется двухобмоточный трансформатор с обмотками 1 и 2 , расположенными на одном стержне. Для наглядности обмотки 1 и 2 показаны на различных участках стержня по высоте. Первичная обмотка трансформатора 1 включается на напряжение сети низшего напряжения U . Вторичная обмотка включается между зажимом а (Х ) входной сети и зажимом х выходной сети таким образом, чтобы ее напряжение добавлялось к напряжению U и увеличивало его до напряжения .

Вторичная обмотка автотрансформатора электрически контактирует с входной и выходной сетями в отличие от обычного трансформатора. Поэтому изоляция вторичной обмотки должна быть рассчитана на наибольшее из напряжений и (в схеме для повышения напряжения по рисунку 1.19 – на напряжение ), а не на напряжение , как в обычном трансформаторе.

Коэффициент трансформации автотрансформатора:

,
где .

В описание электромагнитных процессов в схеме автотрансформатора входят уравнения трансформатора (слева) и уравнения, которые описывают схему автотрансформатора (справа).

; ; ; . ; ; ; .

Полную мощность автотрансформатора без учета потерь можно представить в виде двух составляющих.

В отличие от электрических машин, трансформатор не имеет движущихся частей, поэтому он не имеет и механических потерь при работе. К потерям, имеющим место при работе трансформатора, относятся потери на гистерезис (в результате постоянного циклического перемагничивания сердечника), на вихревые токи и на нагревание проводов обмоток. Других потерь в трансформаторе практически нет.

Коэффициент полезного действия трансформатора - это отношение отдаваемой активной мощности к потребляемой

где - мощность, потребляемая из сети, мощность, отдаваемая нагрузке.

Таким образом, для практического определения КПД трансформатора при номинальной нагрузке необходимо измерить мощности в первичной и вторичной обмотках. Это измерение можно значительно упростить, включив во вторичную обмотку активную нагрузку (рис. 3-10). Тогда (поток рассеяния невелик) и мощность может быть вычислена по показаниям амперметра и вольтметра, включенным во вторичную цепь. Такой метод

определения КПД получил название метода непосредственных измерений. Этот метод весьма прост, но имеет два существенных недостатка: мала точность и неэкономичен. Малая точность обусловлена тем, что КПД трансформаторов очень высок (до 99% и выше) и в некоторых случаях (особенно у трансформаторов большой мощности) мощности мало отличаются, поэтому незначительные ошибки в показаниях приборов повлекут за собой значительные искажения результата вычисления КПД.

Неэкономичность этого способа состоит в большом расходе электроэнергии за время испытания, так как трансформаторы приходится нагружать до номинальных мощностей. Поэтому метод непосредственных измерений не нашел промышленного применения, но может быть использован для трансформаторов малой мощности с небольшим КПД (например, в учебной практике).

На практике КПД трансформаторов определяют косвенным методом, т. е. путем раздельного определения потерь, исходя из того, что КПД трансформатора можно представить так:

где потери в стали (в сердечнике) и потери в меди (в обмотках) измеряют в опытах холостого хода и короткого замыкания соответственно.

Для определения потерь обычно пользуются двумя опытами - опытом холостого хода и опытом короткого замыкания.

В опыте холостого хода, в котором на первичную обмотку I подают номинальное напряжение, а вторичную II оставляют разомкнутой, определяют потери в стали трансформатора, т. е. потери на гистерезис и на вихревые токи (рис. 3-11). Эти потери зависят от частоты тока и от значения магнитиого потока. Так как частота тока постоянна (50 Гц), а магнитный поток при номинальном напряжении на первичной обмотке также практически постоянен, то независимо от того, нагружен трансформатор или нет, потери в стали - для него величина постоянная. Таким образом, можно считать, что в холостом режиме энергия, потребляемая трансформатором из сети, расходуется только на потери в стали, поэтому мощность этих потерь измеряют ваттметром, включенным в первичную цепь. Правда, при этом не учитываются потери на нагревание провода первичной обмотки током холостого хода. Но этот ток незначителен и потери от него также незначительны. В этом опыте определяется также коэффициент трансформации k и ток холостого хода .

Если вторичную обмотку трансформатора замкнуть накоротко,

а на первичную обмотку подать такое пониженное напряжение (в школьной практике, например, от РНШ), при котором токи в обмотках не превышают их номинальных значений, то энергия, потребляемая трансформатором из сети, расходуется в основном на тепловые потери в проводах обмоток трансформатора (рис. 3-12). В самом деле, при короткозамкнутой вторичной обмотке к первичной подводится пониженное напряжение, поэтому магнитный поток очень мал и потери в стали, зависящие от значения магнитного потока, также малы. Этот опыт называют опытом короткого замыкания.

Следовательно, ваттметр, включенный в первичную цепь трансформатора в опыте короткого замыкания, покажет мощность, соответствующую потерям в меди

Устройство которой предназначено для преобразования одной величины переменного тока в другую. Трансформаторы работают на Распространение эти машины получили широчайшее, так как электроэнергию на большие расстояния нужно передавать на напряжениях, значительно больших, чем уровень, который необходим для питания промышленности или для использования в домашних условиях. Таким образом, использование трансформатора позволяет снизить потери электроэнергии при ее передаче и увеличить качество процесса. Одной из самых важных характеристик этой машины является КПД трансформатора, то есть Также важной характеристикой можно назвать и определяемый отношением напряжения входного к выходному.

Трансформатор - это, как правило, статическое устройство. Состоит обычный трансформатор (а они бывают нескольких видов) из сердечника, который набирается из ферромагнитных пластинок, а также вторичной и первичной обмоток, которые расположены противоположно сердечнику. Как уже говорилось, есть основные виды (напряжение на выходе больше, чем на входе) и понижающие (напряжение на выходе меньше, чем на входе). Одним из важных условий работы устройства является одна частота напряжения.


Для определения КПД трансформатора введем такие обозначения:

  • P1 - которую потребляет трансформатор,
  • P2 - отдаваемая мощность,
  • PL - мощность потерь.

В этом случае закон сохранения энергии примет вид: P1= P2+ PL. С помощью этих обозначений легко вывести формулу КПД трансформатора. Формула КПД будет иметь такой вид: n= P2/ P1=(P1- PL)/ P1= 1- PL/ P1. Как видим, ее можно представить в нескольких вариантах. Из последней формулы видно, что КПД трансформатора не может быть больше, чем 1 (то есть невозможно получить превышающий сто процентов). Это и понятно.

Правильный расчет КПД трансформатора - это вопрос более сложный, чем могло показаться на первый взгляд. При проектировании и разработке схем и общей конструкции трансформатора либо серии трансформаторов определенного вида инженеры-проектировщики часто сталкиваются с определенными проблемами. Например, для уменьшения стоимости трансформатора нужно минимизировать расход материалов. Однако, с другой стороны, для того чтобы сделать устройство более надежным в эксплуатации, расход этих материалов придется увеличить.

Именно по этим противоречивым причинам значение КПД трансформатора обычно делают стандартным, тем самым нормируя потери. При определении значения коэффициента полезного действия трансформатора нужно учитывать стоимость материалов, стоимость электроэнергии и линий передач, то есть принимать во внимание множество экономических факторов. КПД трансформатора может меняться в зависимости от нагрузки, и этот фактор также нужно учитывать при разработке конструкции данного устройства.