В чем заключается процесс цифровых фотографий. Получение цифровых фотографий и их обработка


1) стираются все данные
2) производится полная проверка диска
3) производится очистка каталога диска
4) диск становится системным
12. В многоуровневой иерархической файловой системе...
1) Файлы хранятся в системе, представляющей собой систему вложенных папок
2) Файлы хранятся в системе, которая представляет собой линейную последовательность

13. Путь к файлу:
1) это поименованная область на диске;
2) это последовательность из имен каталогов, разделенных знаком «\»;
3) это список файлов, собранных в одном каталоге;
4) это список имен каталогов, собранных в корневом каталоге.

14. В процессе архивации файлы…
1. Сжимаются без потери информации
2. Перемещаются на свободные сектора
3. Копируются в другую папку
4. Удаляются из каталога
15. В процессе дефрагментации диска каждый файл записывается:
1) В нечетных секторах
2) В произвольных кластерах
3) Обязательно в последовательно расположенных секторах
4) В четных секторах

16. Драйверы устройств:
1) это аппаратные средства, подключенные к компьютеру для осуществления операций ввода/вывода;
2) это программные средства, предназначенные для подключения устройств ввода/вывода;
3) это программа, переводящая языки высокого уровня в машинный код;
4) это программа, позволяющая повысить скорость работы пользователя на
17. Прикладные программы
1) Программы, предназначенные для решения конкретных задач
2) Управляют работой аппаратных средств и обеспечивают услугами нас и наши прикладные комплексы
3) Игры, драйверы и трансляторы
4) Программы, которые хранятся на дискетах
18. Операционная система выполняет функции:
1) обеспечения организации и хранения файлов;
2) организации диалога с пользователем, управления аппаратурой и ресурсами компьютера;
3) обмена данными между компьютером и различными периферийными устройствами;
4) подключения устройств ввода/вывода.
19. В процессе загрузки операционной системы происходит:
1) Копирование файлов операционной системы с гибкого диска на жесткий диск
2) Копирование файлов операционной системы с CD диска на жесткий диск
3) Последовательная загрузка файлов операционной системы в оперативную память
4) Копирование содержимого оперативной памяти на жесткий диск
20. Системный диск необходим для:
1) Загрузки операционной системы
2) Защиты компьютера от вирусов
3) Создания программ с использованием графического интерфейса
4) Архивации и разархивации файлов
21. Вершиной иерархической системы папок графического интерфейса Windows является папка:
1. корневого каталога диска
2. мой компьютер
3. сетевое окружение
4. Рабочий стол
22. Диалоговое окно в Windows предназначено для
1) диалога между пользователем и компьютером;
2) удаления программы;
3) отображения пиктограммы программы;
4) отображения названия программы.

23. В Windows не существует
1) окон программ;
2) окон тестирования;
3) диалоговых окон;
4) окон документов.
24. Компьютерные вирусы это…
1) Программы, которые могут размножаться и выполнять вредные действия по уничтожению программ и данных
2) Программы, которые могут заражать телепрограммы
3) Вирусы, которые опасны для здоровья человека

Глава 2
Технология обработки графической информации
31. Все компьютерные изображения разделяют на два типа:
1. растровые и векторные
2. черно – белые и цветные
3. сложные и простые
32. Растровое изображение создается с использованием…
1. точек различного цвета (пикселей)
2. линий
3. окружностей
4. прямоугольников
33. Векторные изображения формируются из…
1. объектов, которые называются графическими примитивами
2. точек различного цвета (пикселей)
3. строк и столбцов
4. рисунков и фотографий
34. Для обработки цифровых фотографий и отсканированных изображений наилучшим средством служит…

35. Для создания рисунков, схем и чертежей наилучшим средством служит…
1. растровый графический редактор
2. векторный графический редактор
3. система компьютерного черчения
36. Форматы графических файлов определяют …
1. Способ и форму хранения информации в файле
2. Качество изображения
3. Объем изображения
4. Размерность изображения
37. В векторном графическом редакторе нарисованный объект…
1. Продолжает сохранять свою индивидуальность, и его можно масштабировать и перемещать по рисунку
2. перестает существовать как самостоятельный элемент после окончания рисования и становится лишь группой пикселей на рисунке.
38. Наиболее распространенными приложениями для разработки презентаций является…
1. Microsoft Power Point
2. Microsoft Access
3. Microsoft Excel
4. Microsoft Word
39. Файлы презентаций могут сохраняться в формате…
1. ppt
2. psd
3. tiff
4. doc

Информацию, существенную и важную в настоящий момент, называют: 1) полной; 2)полезной; 3)актуальной; 4)достоверной. 2. Тактильную информацию человек

получает посредством: 1) специальных приборов; 2) органов осязания; 3) органов слуха; 4) термометра. 3. Примером текстовой информации может служить: 1)таблица умножения на обложке школьной тетради; 2)иллюстрация в книге; 3)правило в учебнике родного языка; 4)фотография; 4. Перевод текста с английского языка на русский язык можно назвать: 1) процессом хранения информации; 2) процессом получения информации; 3) процессом защиты информации; 4) процессом обработки информации. 5. Обмен информацией – это: 1) выполнение домашней работы; 2) просмотр телепрограммы; 3) наблюдение за поведением рыб в аквариуме; 4) разговор по телефону. 6. Система счисления - это: 1) знаковая система, в которой числа записываются по определенным правилам с помощью символов (цифр) некоторого алфавита; 2) произвольная последовательность цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; 3) бесконечна последовательность цифр 0, 1; 4) множество натуральных чисел и знаков арифметических действий. 7. Двоичное число 100012 соответствует десятичному числу: 1) 1110 2) 1710 3) 25610 4)100110 8. Число 2410 соответствует числу: 1) 1816 2) ВF16 3) 2016 4)1011016 9. За единицу количества информации принимается: 1) 1 байт; 2) 1 бит; 3) 1 бод; 4) 1 см. 10. Какое из устройств предназначено для ввода информации: 1) процессор; 2) принтер; 3) клавиатура; 4) монитор. 11. Компьютерные вирусы: 1) возникают в связи сбоев в аппаратной части компьютера; 2) имеют биологическое происхождение; 3) создаются людьми специально для нанесения ущерба ПК; 4) являются следствием ошибок в операционной системе. 12. Алгоритм – это: 1) правила выполнения определенных действий; 2) набор команд для компьютера; 3) протокол для вычислительной сети; 4) описание последовательности действий, строгое исполнение которых приводит к решению поставленной задачи за конечное число шагов. 13. Свойство алгоритма, заключающееся в отсутствии ошибок, алгоритм должен приводить к правильному результату для всех допустимых входных значений, называется: 1) результативность; 2) массовость; 3) дискретность; 4) конечность. 14. Свойство алгоритма, заключающееся в том, что один и тот же алгоритм можно использовать с различными исходными данными, называется: 1) результативность; 2) массовость; 3) конечность; 4) детерминированность. 15. Текстовый редактор – программа, предназначенная для: 1) создания, редактирования и форматирования текстовой информации; 2) работы с изображениями в процессе создания игровых программ; 3) управление ресурсами ПК при создании док3ументов; 4) автоматического перевода с символьных языков в машинные коды. 16. К числу основных функций текстового редактора относятся: 1) копирование, перемещение, уничтожение и сортировка фрагментов текста; 2) создание, редактирование, сохранение и печать текстов; 3) строгое соблюдение правописания; 4) автоматическая обработка информации, представленной в текстовых файлах. 17. Курсор – это: 1) устройство ввода текстовой информации; 2) клавиша на клавиатуре; 3) наименьший элемент отображения на экране; 4) метка на экране монитора, указывающая позицию, в которой будет отображен текст, вводимый с клавиатуры. 18. Форматирование текста представляет собой: 1) процесс внесения изменений в имеющийся текст; 2) процедуру сохранения текста на диске в виде текстового файла; 3) процесс передачи текстовой информации по компьютерной сети; 4) процедуру считывания с внешнего запоминающего устройства ранее созданного текста. 19. Текст, набранный в текстовом редакторе, хранится на внешнем запоминающем устройстве: 1) в виде файла; 2) таблицы кодировки; 3) каталога; 4) директории. 20. Одной из основных функций графического редактора является: 1) ввод изображения; 2) хранение кода изображения; 3) создание изображений; 4) просмотр вывод содержимого видеопамяти. 21. Элементарным объектом, используемым в растровом графическом редакторе, является: 1) точка экрана (пиксель); 2) прямоугольник; 3) круг; 4) палитра цветов. 22. Электронная таблица – это: 1) прикладная программа, предназначенная для обработки структурированных в виде таблицы данных; 2) прикладная программа для обработки изображений; 3) устройство ПК, управляющее его ресурсами в процессе обработки данных в табличной форме; 4) системная программа, управляющая ресурсами ПК при обработке таблиц. 23. Электронная таблица представляет собой: 1) совокупность нумерованных строк и поименованных буквами латинского алфавита столбцов; 2) совокупность поименованных буквами латинского алфавита строк и столбцов; 3) совокупность пронумерованных строк и столбцов; 4) совокупность строк и столбцов, именуемых пользователем произвольным образом. 24. Выберите верную запись формулы для электронной таблицы: 1) С3+4*Е 2) С3=С1+2*С2 3) А5В5+23 4) =А2*А3-А4

Процесс фотографирования стал столь привычен, что превратился во вторую натуру. Вы снимаете объекты на пленку, обрабатываете ее (проявляете и фиксируете), затем печатаете с негативов снимки при помощи увеличителя, а потом наслаждаетесь созерцанием отпечатков. В цифровой фотографии дело обстоит немного сложнее (см. ил. 7).

Ил. 7. В пленочной фотографии процесс состоит из трех основных стадий.

Также есть три главные стадии процесса - съемка (захват и запись изображения), обработка и печать. Однако при этом каждая стадия несколько отличается (см. ил. 8).

Ил. 8. Процесс получения снимка в цифровой фотографии также распадается на три стадии, однако после стадии съемки все происходит совсем по-другому.

Съемка (запись изображения)

Ил. 9. Съемка у пленочных и у цифровых камер происходит одинаково. Различие в том, что цифровая камера запечатлевает изображение при помощи матрицы, состоящей из электронных сенсоров, а пленочная - на светочувствительной пленке.

  • Сцена скомпонована, камера наведена на фокус и затвор сработал. Пока у пленочной и у цифровой камеры все происходит одинаково.
  • Свет попадает на сенсоры. Свет, отраженный от различных участков объекта, при помощи объектива попадает на элементарные сенсоры. Каждый элементарный сенсор получает, вообще говоря, разное количество света.
  • Реагируя на свет, каждый элемент матрицы выдает электрический заряд. Чем большее количество света упадет на элементарный сенсор, там больший заряд он выдаст. Не забудьте, что на каждый элемент установлен свой фильтр - красный, зеленый или синий. Таким образом, этот сигнал отражает не только количество света, но и цвет.
  • Все электрические импульсы воспринимаются, преобразуются в цифровые данные и сохраняются сообразно их положению в матрице. Этот процесс называют также квантованием (дискретизацией). Он осуществляется при помощи специального чипа, который называется аналогово-цифровым преобразователем, или АЦП-преобразователем.
  • Цифровая информация сохраняется в камере в виде файла изображения. Этот файл содержит информацию обо всех пикселях цифрового изображения, то есть об их координатах, цвете и яркости. Эти файлы сохраняются на флэш-карте камеры (обычно) или на другом носителе (у некоторых моделей камер). Процесс съемки завершен, камера готова к следующему кадру.

Компьютерная обработка

Ил. 10. Все преимущества цифровой фотографии можно оценить только на стадии обработки изображения. Изображение можно улучшить или изменить согласно любым фантазиям фотографа.

  • Цифровые файлы передаются в компьютер. Камера может хранить ограниченный объем информации, поэтому на определенной стадии необходимо перекачать файлы с записанными изображениями в компьютер. Обычно это делается при помощи специального кабеля, соединяющего камеру с компьютером.
  • Когда изображения попадают в компьютер, для их обработки можно запустить программу наподобие Photoshop.
  • Обработанная картинка сохраняется в компьютере, как правило, на его жестком диске.

Вывод на печать

Ил. 11. При печати с пленочных негативов результат может быть только один - отпечатанная на фотобумаге фотография. Цифровая фотография предоставляет больше возможностей.

  • Теперь изображение готово к выводу на принтер. В большинстве случаев это предполагает печать на струйном цветном принтере или на принтере аналогичного типа. Однако цифровое изображение можно также выложить в Интернет или даже вывести на фотопленку - на позитивную (в виде слайда) или на негативную.

Также фотографией или фотоснимком, или просто снимком называют конечное изображение, полученное в результате и рассматриваемое человеком непосредственно (имеется в виду как кадр проявленной плёнки, так и изображение в электронном или печатном виде).

В более широком смысле, фотография — это искусство получения фотоснимков, где основной творческий процесс заключается в поиске и выборе композиции, освещения и момента (или моментов) фотоснимка. Такой выбор определяется , а также его личными предпочтениями и вкусом, что характерно для любого вида искусства.

В зависимости от принципа работы фотографию принято делить на подразделы:

Получение движущихся изображений, основанное на фотографических принципах, называется .

Фотография основана на достижениях науки прежде всего в области , и . Развитие на нынешнем этапе цифровой фотографии происходит благодаря в основном электронным и информационным технологиям.

Принцип действия

Принцип действия фотографии основан на получении и фиксировании их с помощью химических и физических процессов, получаемых с помощью , то есть электромагнитных волн, излучаемых непосредственно или отражённых.

Изображения с помощью отражённого от предметов видимого света получали ещё в глубокой древности и использовали для живописных и технических работ. Метод, названный позже ортоскопической фотографией, не требует серьёзных оптических приспособлений. В те времена использовались лишь малые отверстия и, иногда, щели. Проецировались изображения на противоположные от этих отверстий поверхности. Далее метод был усовершенствован с помощью оптических приборов, помещаемых на место отверстия. Это послужило основой для создания камеры, ограничивающей получаемое изображение от засветки не несущим изображение светом. Камера была названа , изображение проецировалось на её заднюю матовую стенку и перерисовывалось по контуру художником. После изобретения методов химической фиксации изображения, камера-обскура стала конструктивным прообразом . Название «фотография» было выбрано как наиболее благозвучное из нескольких вариантов во Французской академии в .

Фототехника

По мере развития фотографии было создано большое количество различных конструкций и вспомогательных механизмов для получения изображений. Основное устройство— фотографический аппарат, сокращённо «фотоаппарат» или «фотокамера», и принадлежности к нему.

Фотоаппарат

В фотоаппарате есть:

Все остальные элементы фотоаппарата не оказывают непосредственного влияния на процесс съёмки и могут как присутствовать в конструкции, так и отсутствовать. Существуют фотографические камеры и без объектива (см. ).

Фотопринадлежности

Помимо собственно фотоаппарата и сменных объективов, в процессе съёмки могут использоваться другие .

Съёмочные

Принадлежности для обработки

Цифровая фотография

Цифровая фотография— относительно молодая, но популярная технология, зародившаяся в , когда компания выпустила на рынок камеру с , записывающей снимки на диск. Этот аппарат не был цифровым в современном понимании (на диск записывался аналоговый сигнал), однако позволял отказаться от фотоплёнки. Первая полноценная цифровая камера— — была выпущена в компанией .

Принцип работы цифровой камеры заключается в фиксации светового потока и преобразования этой информации в цифровую форму.

В настоящее время цифровая фотография повсеместно вытесняет плёночную в большинстве отраслей.

Так как для сброса заряда сенсора требуется некоторое время (равно как и для чтения информации и установки параметров), всегда существует некоторая неизбежная задержка между полным нажатием на клавишу затвора и временем съемки изображения. На рядовой любительской цифровой камере эта задержка начинается от 60 миллисекунд (этот промежуток настолько мал, что вы вряд ли его заметите) до 1 секунды.

Использование больших буферов памяти и скоростных процессоров может уменьшить задержку, по этой причине дорогие фотоаппараты снимают быстрее своих дешевых собратьев. Среди самых дорогих профессиональных камер можно выделить новый Nikon DH1 с 128 Мб буфером. Другие камеры типа Kodak DCS 520, 620 и Fuji S1 оснащены 64 Мб буфером. Очень небольшое количество профессиональных и high-end любительских камер оснащено буферами размером 16 Мб или 32 Мб.

Кроме того, ряд сенсоров (особенно КМОП) являются многофункциональными чипами с некоторым встроенным интеллектом, что помогает им уменьшать время, затрачиваемое на передачу и на обработку полученной информации. Подобно любой другой цифровой системе, цифровая камера работает тем быстрее, чем выше ее внутренняя пропускная способность.

Когда сенсор преобразует попавшие на него фотоны в электроны, то он работает с аналоговыми данными. Следующим шагом является снятие сохраненных электрических сигналов из пикселей и дальнейшее их преобразование в электрический ток посредством встроенного выходного усилителя. Ток посылается на внешний или встроенный аналого-цифровой преобразователь (АЦП).

Одним из главных отличий между КМОП и ПЗС сенсорами является то, что в КМОП сенсоре АЦП интегрирован, а при использовании ПЗС сенсора он находится на внешнем чипе. Но по этой же причине КМОП сенсор более зашумлен. АЦП преобразует различные уровни напряжения в двоичные цифровые данные. Цифровые данные подвергаются дальнейшей обработке и организуются в соответствии с битовой глубиной цвета для красного, зеленого и синего каналов, что выражается в интенсивности данного цвета для выбранного пикселя.

Разберемся с терминологией

Некоторые могут неправильно интерпретировать термин "битовая глубина цвета". Для понимания этого термина рассмотрим основы цифрового цвета. Все цвета в цифровом фотоаппарате создаются с помощью комбинации интенсивности (или битовых значений) трех главных цветов - красного, зеленого и синего. Эти три главные цвета также называются каналами.

Битовая глубина может быть определена для каждого из трех каналов (например, 10 бит, 12 бит и т.д.) или для всего спектра, при этом битовые значения каналов умножаются на три (30 бит, 36 бит и т.д.) Однако в мире приняты зачастую нелогичные соглашения по терминологии, поэтому вам придется кое-что просто запомнить. Например, 24-битный цвет (который иногда также называют True Color, так как он первым в цифровом мире приблизился по количеству цветов к уровню восприятия человеческого глаза) отводит по 8 бит на каждый канал.

Но 24-битный цвет никогда не называют 8-битным цветом. Если вы услышите, что кто-то говорит о 8-битном цвете, то он вовсе не имеет в виду 8 бит на канал. Скорее всего, этот человек подразумевает 8 бит на весь спектр, что дает 256 различных цветов (очень ограниченный спектр, кстати). 24-битный же цвет дает возможность отобразить 16,7 млн различных оттенков. Поэтому лучше всего принять 24-битный цвет как разделительную линию: если количество бит в спектре больше 24, то принято называть такую битовую глубину по количеству бит на весь спектр или по количеству бит на канал. Если же количество бит 24 или меньше, то такую битовую глубину лучше называть по количеству бит в полном спектре.

До прошлой осени почти все любительские цифровые фотоаппараты работали с 24-битным цветом (используя 8-битные АЦП). Сейчас уже появились некоторые модели, типа Olympus E-10 и HP PhotoSmart 912, которые могут работать 30 или 36-битным цветом (используя 10 или 12-битные АЦП). Впрочем, некоторые цифровые фотоаппараты, способные снимать с большей глубиной цвета, используют 8-битные АЦП, что приводит к выводу изображения только с 24-битной глубиной. (Небольшое число камер, типа Canon PowerShot G1, могут записывать 36-битное изображение в формате RAW, но этот формат патентован, и он не может быть считан напрямую ни одной программой редактирования изображений. Хотя Photoshop и понимает изображения с глубиной вплоть до 16 бит на канал, его функциональность в таких случаях ограничена. Программное обеспечение для работы с камерой Canon должно сначала преобразовать файл в TIFF, который уже можно будет загрузить в Photoshop. Еще одна неприятная вещь: с такими файлами не будет работать большинство устройств вывода). Возникает закономерный вопрос: зачем нам нужно снимать с такой глубиной цвета, если нам будет очень трудно или даже невозможно использовать такие изображения? Все дело в том, что чем больше битовая глубина цвета, тем больше деталей и градаций оттенков мы получим, особенно это касается затененных и ярко освещенных объектов. Здесь существует интересное решение. Как только камера (или ее программное обеспечение) получит данные, она может проанализировать их и при преобразовании изображения в 24-битное фотоаппарат попытается сохранить правильные цвета на самых критических участках.

Если в камере используется хороший алгоритм, то в результате получится лучшее изображение (по диапазону полутонов и по детализации в ярко освещенных областях и тенях), чем если бы камера изначально получала 24-битное изображение и потом его записывала. Большая глубина цвета (производная от глубины получаемого на сенсоре цвета и АЦП) является одной из характеристик, отличающих профессиональные цифровые камеры от любительских и полу-профессиональных (в дополнение к лучшей оптике и большим возможностям профессиональных устройств). По этой же причине, даже если цифровые фотоаппараты <$1000 оснащаются сенсором с большим разрешением чем камера за $10 000, это отнюдь не означает, что менее дорогой фотоаппарат будет получать такие же качественные снимки.

АЦП передает поток цифровых данных на чип цифрового процессора сигналов (DSP). В некоторых камерах используется несколько DSP. В чипе DSP данные преобразуются в изображение на основе определенных инструкций. Эти инструкции включают в себя определение координат полученных от сенсора точек и присвоение им цвета по черно-белой и цветной шкале. В камерах с одним сенсором, использующим массив цветных светофильтров, применяются алгоритмы присвоения цветов с учетом мозаичного расположения пикселей.

Лучше всего представлять расположение массива цветных светофильтров как мозаику, составленную из трех или четырех основных или дополнительных цветов. Из этих цветов создаются все остальные оттенки. Алгоритмы преобразования анализируют соседние пиксели для определения цвета данного пикселя. Таким образом, в итоге получается изображение, похожее на то, если бы мы создавали его от трех физически разделенных сенсоров (если используются цвета RGB). Поэтому в результате изображение передает естественные цвета и переходы между ними.

Кроме описанного процесса, DSP отвечает за разрешение изображения. Хотя большинство цифровых фотоаппаратов можно настроить на различные разрешения, внутри себя они будут получать и обрабатывать данные исходя от разрешения сенсора. Например, при VGA съемке на 3 Мегапиксельной цифровой камере, она будет выполнять съемку в разрешении 2048x1548, а не в 640x480. Далее DSP переведет (интерполирует) изображение в выбранное фотографом разрешение (кстати, разрешение выбирается через операционную систему с помощью ЖК дисплея или панели управления, или при нажатии соответствующей клавиши).

Однако некоторые сенсоры (как правило, КМОП) могут выборочно отсеивать пиксели вместо интерполирования, таким образом, выбирая меньшее или большее разрешение прямо во время съемки. Такая возможность КМОП сенсоров связана с подобной ОЗУ структурой, благодаря чему сенсор может выбрать требуемые данные через быстрый доступ по строке/столбцу. В отличие от КМОП сенсора, ПЗС сенсор является устройством последовательного вывода данных, он должен непременно передать все данные, а уже потом процессор камеры сам будет осуществлять интерполяцию. Обычно использование КМОП сенсора, который может снимать только нужные данные, позволяет ускорить время обработки изображения в фотоаппарате.

Кстати, алгоритм преобразования изображения в требуемое разрешение обычно держится производителями в секрете, так что он зависит от конкретной модели фотоаппарата. Другими словами, DSP осуществляет улучшение изображения в зависимости от параметров, заданных производителем. Таким образом, изображение, созданное любой камерой, является уникальным. Оно реализует свой баланс цветов и свою насыщенность (которые производитель счел наилучшими). Некоторые производители предпочитают добавлять теплые (розоватые) цвета, другие, наоборот, - холодные (голубоватые). Третьи выбирают нейтральную, реалистичную насыщенность для более аккуратной передачи цветов. (Производитель выбирает цвета и насыщенность в каждой модели на основе своих предположений о том, какие цвета и оттенки больше понравятся среднему покупателю. Такой выбор редко бывает случайным, чаще всего он базируется на основе выбранного корпоративного дизайна).

Что такое фотография.

Фотогра́фия (фр. photographie от др.-греч. φως / φωτος — свет и γραφω — пишу; светопись — техника рисования светом ) — получение и сохранение статичного изображения на светочувствительном материале (фотоплёнке или фотографической матрице ) при помощи фотокамеры .

Также фотографией или фотоснимком, или просто снимком называют конечное изображение, полученное в результате фотографического процесса и рассматриваемое человеком непосредственно (имеется в виду как кадр проявленной плёнки, так и изображение в электронном или печатном виде).

В зависимости от принципа работы светочувствительного материала фотографию принято делить на три больших подраздела:

Плёночная фотография — основана на фотоматериалах, в которых происходят фотохимические процессы.

Цифровая фотография — в процессе получения и сохранения изображения происходят перемещения электрических зарядов (обычно в результате фотоэффекта и при дальнейшей обработке), но не происходит химических реакций или перемещения вещества. Правильнее было бы называть такую фотографию электронной, так как в ряде устройств, традиционно относимых к «цифровым», происходят аналоговые процессы.

Электрографические и иные процессы, в которых не происходит химических реакций, но происходит перенос вещества, образующего изображение. Специального общего названия для этого раздела не выработано, до появления цифровой фотографии часто употреблялся термин «бессеребряная фотография».

Принцип действия

Принцип действия фотографии основан на получении изображений и фиксировании их с помощью химических и физических процессов, получаемых с помощью света, то есть электромагнитных волн, излучаемых непосредственно или отражённых.

Изображения с помощью отражённого от предметов видимого света получали ещё в глубокой древности и использовали для живописных и технических работ. Метод, названный позже ортоскопической фотографией, не требует серьёзных оптических приспособлений. В те времена использовались лишь малые отверстия и, иногда, щели. Проектировались изображения на противоположные от этих отверстий поверхности. Далее метод был усовершенствован с помощью оптических приборов, помещаемых на место отверстия. Это послужило основой для создания камеры, ограничивающей получаемое изображение от засветки не несущим изображение светом. Камера была названа обскурой, изображение проецировалось на её заднюю матовую стенку и перерисовывалось по контуру художником. После изобретения методов химической фиксации изображения, камера-обскура стала конструктивным прообразом фотографического аппарата. Название «фотография» было выбрано как наиболее благозвучное из нескольких вариантов во Французской академии в 1839 году.

Виды фотографии

Чёрно-белая фотография

Чёрно-белая фотография — исторически первый вид фотографии. После появления цветной, а затем и цифровой фотографии, чёрно-белые снимки сохранили свою популярность. Зачастую цветные фотографии преобразуются в чёрно-белые для получения художественного эффекта.

Цветная фотография

Цветная фотография появилась в середине XIX века . Первый устойчивый цветной фотоснимок был сделан в 1861 году Джеймсом Максвеллом по методу трехцветной фотографии (метод цветоделения).

Для получения цветного снимка по этому использовались три фотокамеры с установленными на них цветными светофильтрами (красным, зелёным и синим ). Получившиеся снимки позволяли воссоздать при проекции (а позднее, и в печати) цветное изображение.

Вторым важнейшим шагом в развитии метода трехцветной фотографии стало открытие в 1873 г. немецким фотохимиком Германом Вильгельмом Фогелем сенсибилизаторов, то есть веществ, способных повышать чувствительность серебряных соединений к лучам различной длины волны. Фогелю удалось получить состав, чувствительный к зелёному участку спектра .

Практическое применение трехцветной фотографии стало возможным после того, как ученик Фогеля, немецкий ученый Адольф Мите разработал сенсибилизаторы, делающие фотопластину чувствительной к другим участкам спектра. Он также сконструировал фотокамеру для трехцветной съемки и трехлучевой проектор для показа полученных цветных снимков. Это оборудование в действии впервые было продемонстрировано Адольфом Мите в Берлине в 1902 г.

Большой вклад в дальнейшее совершенствование метода трехцветной фотографии внёс ученик Адольфа Мите Сергей Прокудин-Горский , разработавший технологии, позволяющие уменьшить выдержку и увеличить возможности тиражирования снимка. Прокудин-Горский также открыл в 1905 г. свой рецепт сенсибилизатора, создававшего максимальную чувствительность к красно-оранжевому участку спектра, превзойдя в этом отношении А.Мите.

Наряду с методом цветоделения с начала XX века стали активно развиваться и другие процессы (методы) цветной фотографии. В частности, в 1907 году были запатентованы и поступили в свободную продажу фотопластины «Автохром » Братьев Люмьер , позволяющие относительно легко получать цветные фотографии. Несмотря на многочисленные недостатки (быстрое выцветание красок, хрупкость пластин, зернистость изображения), метод быстро завоевал популярность и до 1935 г. в мире было произведено 50 млн автохромных пластинок.

Альтернативы этой технологии появились только в 1930-х годах: Agfacolor в 1932 году , Kodachrome в 1935 , Polaroid в 1963 .

Цифровая фотография

Цифровая фотография — относительно молодая, но популярная технология, зародившаяся в 1981 году , когда компания Sony выпустила на рынок камеру с ПЗС-Матрицей , записывающей снимки на диск. Этот аппарат не был цифровым в современном понимании (на диск записывался аналоговый сигнал), однако позволял отказаться от фотоплёнки. Первая полноценная цифровая камера — была выпущена в 1990 году компанией Kodak .

Принцип работы цифровой камеры заключается в фиксации светового потока матрицей и преобразования этой информации в цифровую форму.

В настоящее время цифровая фотография повсеместно вытесняет плёночную в большинстве отраслей.