Турбогенератор принцип работы. Турбогенератор: назначение и принцип действия


24 октября 2012

Электрическая энергия давно вошла в нашу жизнь. Еще греческий философ Фалес в 7 веке до нашей эры обнаружил, что янтарь, потертый о шерсть начинает притягивать предметы. Но долгое время на этот факт никто не обращал внимание. Лишь в 1600 году впервые появился термин «Электричество», а в 1650 году Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. Это была первая простейшая электростатическая машина.

Прошло много лет с тех пор, но даже сегодня, в мире, заполненном терабайтами информации, когда можно самому узнать все, что тебя интересует, для многих остается загадкой как производится электричество, как его доставляют к нам в дом, офис, на предприятие…

В несколько частей рассмотрим эти процессы.

Часть I. Генерация электрической энергии.

Откуда же берется электрическая энергия? Появляется эта энергия из других видов энергии – тепловой, механической, ядерной, химической и многих других. В промышленных масштабах электрическую энергию получают на электростанциях. Рассмотрим только самые распространенные виды электростанций.

1) Тепловые электростанции. Сегодня из можно объединить одним термином – ГРЭС (Государственная Районная Электростанция). Конечно, сегодня этот термин потерял первоначальный смысл, но он не ушел в вечность, а остался с нами.

Тепловые электростанции делятся на несколько подтипов:

А) Конденсационная электростанция (КЭС) - тепловая электростанция, производящая только электрическую энергию, своим названием этот тип электростанций обязан особенностям принципа работы.

Принцип работы: В котел при помощи насосов подается воздух и топливо (газообразное, жидкое или твердое). Получается топливо-воздушная смесь, которая горит в топке котла, выделяя огромное количество теплоты. При этом вода проходит по трубной системе, которая располагается внутри котла. Выделяющаяся теплота передается этой воде, при этом ее температура повышается и доводится до кипения. Пар, который был получен в котле снова идет в котел для перегревания его выше температуры кипения воды (при данном давлении), затем по паропроводам он поступает на паровую турбину, в которой пар совершает работу. При этом он расширяется, уменьшается его температура и давление. Таким образом, потенциальная энергия пара передается турбине, а значит, превращается в кинетическую. Турбина же в свою очередь приводит в движение ротор трехфазного генератора переменного тока, который находится на одном валу с турбиной и производит энергию.

Рассмотрим некоторые элементы КЭС поближе.

Паровая турбина.

Поток водяного пара поступает через направляющие аппараты на криволинейные лопатки, закрепленные по окружности ротора, и, воздействуя на них, приводит ротор во вращение. Между рядами лопаток, как видите, есть промежутки. Они есть потому, что этот ротор вынут из корпуса. В корпус тоже встроены ряды лопаток, но они неподвижны и служат для создания нужного угла падения пара на движущиеся лопатки.

Конденсационные паровые турбины служат для превращения максимально возможной части теплоты пара в механическую работу. Они работают с выпуском (выхлопом) отработавшего пара в конденсатор, в котором поддерживается вакуум.

Турбина и генератор, которые находятся на одном валу называются турбогенератором. Трехфазный генератор переменного тока (синхронная машина).

Он состоит из:


Который повышает напряжение до стандартного значения (35-110-220-330-500-750 кВ). При этом ток значительно уменьшается (например, при увеличении напряжения в 2 раза, ток уменьшается в 4 раза), что позволяет передавать мощность на большие расстояния. Следует отметить, что когда мы говорим о классе напряжения, то мы имеем в виду линейное (междуфазное) напряжение.

Активную мощность, которую вырабатывает генератор, регулируют изменением количеством энергоносителя, при этом изменяется ток в обмотке ротора. Для увеличения выдаваемой активной мощности нужно увеличить подачу пара на турбину, при этом ток в обмотке ротора возрастет. Не следует забывать, что генератор синхронный, а это значит, что его частота всегда равна частоте тока в энергосистеме, и изменение параметров энергоносителя не повлияет на частоту его вращения.

Кроме того, генератор вырабатывает и реактивную мощность. Ее можно использовать для регулирования выдаваемого напряжения в небольших пределах (т.е. это не основное средство регулирования напряжения в энергосистеме). Работает это таким образом. При перевозбуждении обмотки ротора, т.е. при повышении напряжения на роторе сверх номинала, «излишек» реактивной мощности выдается в энергосистему, а когда обмотку ротора недовозбуждают, то реактивная мощность потребляется генератором.

Таким образом, в переменном токе мы говорим о полной мощности (измеряется в вольт-амперах – ВА), которая равна корню квадратному от суммы активной (измеряется в ваттах – Вт) и реактивной (измеряется в вольт-амперах реактивных – ВАР) мощностях.

Вода в водохранилище служит для отведения тепла от конденсатора. Однако, часто для этих целей используют брызгальные бассейны


или градирни. Градирни бывают башенными Рис.8

или вентиляторными Рис.9

Градирни устроены почти так же как и , с тем лишь различием, что вода стекает по радиаторам, передает им тепло, а уже они охлаждаются нагнетаемым воздухом. При этом часть воды испаряется и уносится в атмосферу.
КПД такой электростанции не превышает 30%.

Б) Газотурбинная электростанция.

На газотурбинной электростанции турбогенератор приводится в движение не паром, а непосредственно газами, получаемыми при сгорании топлива. При этом можно использовать только природный газ, иначе турбина быстро выйдет из стоя из-за ее загрязнения продуктами горения. КПД на максимальной нагрузке 25-33%

Гораздо больший КПД (до 60%) можно получить, совмещая паровой и газовый циклы. Такие установки называются парогазовыми. В них вместо обычного котла установлен котел-утилизатор, не имеющий собственных горелок. Теплоту он получает от выхлопа газовой турбины. В настоящее время ПГУ активнейшим образом внедряются в нашу жизнь, но пока в России их немного.

В) Теплоэлектроцентрали (очень давно стали неотъемлемой частью крупных городов). Рис.11

ТЭЦ конструктивно устроена как конденсационная электростанция (КЭС). Особенность электростанции такого типа состоит в том, что она может вырабатывать одновременно как тепловую, так и электрическую энергию. В зависимости от вида паровой турбины, существуют различные способы отборы пара, которые позволяют забирать из нее пар с разными параметрами. При этом часть пара или полностью весь пар (зависит от типа турбины) поступает в сетевой подогреватель, отдает ему теплоту и конденсируется там. Теплофикационные турбины позволяют регулировать количество пара для тепловых или промышленных нужд что позволяет ТЭЦ работать в нескольких режимах по нагрузке:

тепловому - выработка электрической энергии полностью зависит от выработки пара для промышленных или теплофикационных нужд.

электрическому - электрическая нагрузка независима от тепловой. Кроме того, ТЭЦ могут работать и в полностью конденсационном режиме. Это может потребоваться, например, при резком дефиците активной мощности летом. Такой режим является невыгодным для ТЭЦ, т.к. значительно снижается КПД.

Одновременное производство электрической энергии и тепла (когенерация) – выгодный процесс, при котором КПД станции существенно повышается. Так, например, расчетный КПД КЭС составляет максимум 30%, а у ТЭЦ – около 80%. Плюс ко всему, когенерация позволяет уменьшить холостые тепловые выбросы, что положительно сказывается на экологии местности, в которой расположена ТЭЦ (по сравнению с тем, если бы тут была КЭС аналогичной мощности).

Рассмотрим подробнее паровую турбину.

К теплофикационным паровым турбинам относятся турбины с:

Противодавлением;

Регулируемым отбором пара;

Отбором и противодавлением.

Турбины с противодавлением работают с выхлопом пара не в конденсатор, как у КЭС, а в сетевой подогреватель, то есть весь пар, пошедший через турбину, идет на теплофикационные нужды. Конструкция таких турбин обладает существенным недостатком: график электрической нагрузки полностью зависит от графика тепловой нагрузки, то есть такие аппараты не могут принимать участия в оперативном регулировании частоты тока в энергосистеме.

В турбинах, имеющих регулируемый отбор пара, происходит его отбор в нужном количестве в промежуточных ступенях, при этом выбирают такие ступени для отбора пара, какие подходят в данном случае. Такой тип турбины обладает независимостью от тепловой нагрузки и регулирование выдаваемой активной мощности можно регулировать в больших пределах, чем у ТЭЦ с противодавлением.

Турбины с отбором и противодавлением совмещают в себе функции первых двух видов турбин.

Теплофикационные турбины ТЭЦ не всегда не способны за малый промежуток времени изменить тепловую нагрузку. Для покрытия пиков нагрузки,а иногда и для увеличения электрической мощности путем перевода турбин в конденсационный режим, на ТЭЦ устанавливают пиковые водогрейные котлы.

2) Атомные электростанции.

В России на настоящий момент существует 3 вида реакторных установок. Общий принцип их работы примерно похож на работу КЭС (в былые времена АЭС называли ГРЭС). Принципиальное различие состоит лишь в том, что тепловую энергию получают не в котлах на органическом топливе, а в ядерных реакторах.

Рассмотрим две самых распространенных типов реакторов в России.

1) Реактор РБМК .


Отличительная особенность этого реактора состоит в том, что пар для вращения турбины получают непосредственно в активной зоне реактора.

Активная зона РБМК. Рис.13

состоит из вертикальных графитовых колонн, в которых находятся продольные отверстия, с вставленными туда трубами из циркониевого сплава и нержавеющей стали. Графит выполняет роль замедлителя нейтронов. Все каналы делятся на топливные и каналы СУЗ (система управления и защиты). Они имеют разные контуры охлаждения. В топливные каналы вставляют кассету (ТВС – тепловыделяющую сборку) со стержнями (ТВЭЛ – тепловыделяющий элемент) внутри которых находятся урановые таблетки в герметичной оболочке. Понятно, что именно от них получают тепловую энергию, которая передается непрерывно циркулирующему снизу вверх теплоносителю под большим давлением – обычной, но очень хорошо очищенной от примесей воде.

Вода, проходя по топливным каналам, частично испаряется, пароводяная смесь поступает от всех отдельных топливных каналов в 2 барабан-сепаратора, где происходит отделение (сепарация) пара от воды. Вода снова уходит в реактор с помощью циркуляционных насосов (всего из 4 на петлю), а пар по паропроводам идет на 2 турбины. Затем пар конденсируется в конденсаторе, превращается в воду, которая снова идет в реактор.

Тепловой мощностью реактора управляют только с помощью стержней-поглотителей нейтронов из бора, которые перемещаются в каналах СУЗ. Вода, охлаждающая эти каналы идет сверху вниз.

Как вы могли заметить, я еще ни разу не сказал про корпус реактора. Дело в том, что фактически у РБМК нет корпуса. Активная зона про которую я вам сейчас рассказывал помещена в бетонную шахту, сверху она закрыта крышкой весом в 2000 тонн.

На приведенном рисунке видна верхняя биологическая защита реактора. Но не стоит ожидать, что приподняв один из блоков, можно будет увидеть желто-зеленое жерло активной зоны, нет. Сама крышка располагается значительно ниже, а над ней, в пространстве до верхней биологической защиты остается промежуток для коммуникаций каналов и полностью извлеченных стержней поглотителей.

Между графитовыми колоннами оставляют пространство для теплового расширения графита. В этом пространстве циркулирует смесь газов азота и гелия. По ее составу судят о герметичности топливных каналов. Активная зона РБМК рассчитана на разрыв не более 5 каналов, если разгерметизируется больше – произойдет отрыв крышки реактора и раскрытие остальных каналов. Такое развитие событий вызовет повторение Чернобыльской трагедии (тут я имею в виду не саму техногенную катастрофу, а ее последствия).

Рассмотрим плюсы РБМК:

—Благодаря поканальному регулированию тепловой мощности есть возможность менять топливные сборки, не останавливая реактор. Каждый день, обычно, меняют несколько сборок.

—Низкое давление в КМПЦ (контур многократной принудительной циркуляции), что способствует более мягкому протеканию аварий, связанных с его разгерметизацией.

—Отсутствие сложного в изготовлении корпуса реактора.

Рассмотрим минусы РБМК:

—В ходе эксплуатации были обнаружены многочисленные просчеты в геометрии активной зоны, устранить которые на действующих энергоблоках 1-го и 2-го поколений (Ленинград, Курск, Чернобыль, Смоленск) полностью не возможно. Энергоблоки РБМК 3-его поколения (он один – на 3 энергоблоке Смоленской АЭС) лишен этих недостатков.

—Реактор одноконтурный. То есть турбины вращает пар, полученный непосредственно в реакторе. А это значит, что он содержит радиоактивные компоненты. При разгерметизации турбины (а такое было на Чернобыльской АЭС в 1993 году) ее ремонт будет сильно усложнен, а, может быть, и невозможен.

—Срок службы реактора определяется сроком службы графита (30-40 лет). Затем наступает его деградация, проявляющаяся в его разбухании. Этот процесс уже вызывает серьезные опасения на старейшем энергоблоке РБМК Ленинград-1, построенном в 1973 году (ему уже 39 лет). Наиболее вероятный выход из ситуации – заглушение n-нного количества каналов для уменьшения теплового расширения графита.

—Графитовый замедлитель является горючим материалом.

—Ввиду огромного количества запорной арматуры, реактор сложен в управлении.

— На 1 и 2 поколениях существует неустойчивость при работе на малых мощностях.

В целом можно сказать, что РБМК – хороший реактор для своего времени. В настоящее время принято решение не строить энергоблоки с этим типом реакторов.

2) Реактор ВВЭР.

На смену РБМК в настоящее время приходит ВВЭР. Он обладает значительными плюсами по сравнению с РБМК.

Активная зона полностью находится в очень прочном корпусе, который изготавливают на заводе и привозят железнодорожным, а затем и автомобильным транспортом на строящийся энергоблок в полностью готовом виде. Замедлителем является чистая вода под давлением. Реактор состоит из 2-х контуров: вода первого контура под большим давлением охлаждает топливные сборки, передавая тепло 2-му контуру с помощью парогенератора (выполняет функцию теплообменника между 2-ми изолированными контурами). В нем вода второго контура кипит, превращается в пар и идет на турбину. В первом контуре вода не кипит, так как она находится под очень большим давлением. Отработанный пар конденсируется в конденсаторе и снова идет в парогенератор. Двухконтурная схема обладает значительными плюсами по сравнению с одноконтурной:

Пар, идущий на турбину не радиоктивен.

Мощностью реактора можно управлять не только стержнями-поглотителями, но и раствором борной кислоты, что делает реактор более устойчивым.

Элементы первого контура располагаются очень близко друг от друга, поэтому их можно поместить в общую защитную оболочку. При разрывах в первом контуре радиоактивные элементы попадут в гермооболочку и не выйдут в окружающую среду. Кроме того гермооболочка защищает реактор от внешнего воздействия (например от падения небольшого самолета или взрыва за периметром станции).

Реактор не сложен в управлении.

Имеются так же и минусы:

—В отличие от РБМК, топливо нельзя менять при работающем реакторе, т.к. оно находится в общем корпусе, а не в отдельных каналах, как в РБМК. Время перезагрузки топлива обычно совпадает со временем текущего ремонта, что уменьшает воздействие этого фактора на КИУМ (коэффициент используемой установленной мощности).

—Первый контур находится под большим давлением, что потенциально может вызвать больший масштаб аварии при разгерметизации, чем РБМК.

—Корпус реактора очень сложно перевезти с завода-изготовителя на стройплощадку АЭС.

Что же, работу тепловых электростанций мы рассмотрели, теперь рассмотрим работу

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. ГЭС обладают очень высокой маневренностью вырабатываемой мощности, а также малой стоимостью вырабатываемой электроэнергии. Эта особенность ГЭС привела с созданию другого типа электростанции – ГАЭС. Такие станции способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (обычно ночью), гидроагрегаты ГАЭС работают как насосы, потребляя электрическую энергию из энергосистемы, и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность (в пики нагрузки), вода из них поступает в напорный трубопровод и приводит в действие турбины. ГАЭС выполняют исключительно важную функцию в энергосистеме (регулирование частоты), но они не получают широкого распространения у нас в стране, т.к. в итоге они потребляют больше мощности, чем выдают. То есть станция такого типа убыточна для владельца. Например, на Загорской ГАЭС мощность гидрогенераторов в генераторном режиме 1200 МВт, а в насосном – 1320 МВт. Однако такой тип станции наилучшем образом подходит для быстрого увеличения или уменьшения вырабатываемой мощности, поэтому их выгодно сооружать около, например, АЭС, так как последние работают в базовом режиме.

Мы с вами рассмотрели как именно производится электрическая энергия. Пора задать себе серьезный вопрос: «А какой тип станций наилучшем образом отвечает всем современным требованиям по надежности, экологичности, а кроме этого, еще и будет отличаться малой стоимостью энергии?» Каждый ответит на этот вопрос по-разному. Приведу свой список «лучших из лучших».

1) ТЭЦ на природном газе. КПД таких станций очень высок, высока и стоимость топлива, но природный газ – один из самых «чистых» видов топлива, а это очень важно для экологии города, в черте которых обычно и располагаются ТЭЦ.

2) ГЭС и ГАЭС. Преимущества над тепловыми станциями очевидно, так как этот тип станции не загрязняет атмосферу и производит самую «дешевую» энергию, которая плюс ко всему является возобновляемым ресурсом.

3) ПГУ на природном газе. Самый высокий КПД среди тепловых станций, а так же малое количество потребляемого топлива, позволит частично решить проблему теплового загрязнения биосферы и ограниченных запасов ископаемого топлива.

4) АЭС. В нормальном режиме работы АЭС выбрасывает в окружающую среду в 3-5 раз меньше радиоактивных веществ, чем тепловая станция той же мощности, поэтому частичное замещения тепловых электростанций атомными вполне оправдано.

5) ГРЭС. В настоящее время на таких станциях в качестве топлива используют природный газ. Это является абсолютно бессмысленным, так как с тем же успехов в топках ГРЭС можно утилизировать попутный нефтяной газ (ПНГ) или сжигать уголь, запасы которого огромны, по сравнению с запасами природного газа.

На этом я завершаю первую часть статьи.

Материал подготовил:
студент группы ЭС-11б ЮЗГУ Агибалов Сергей.

Турбогенераторы являются основной в мире машиной, вырабатывающей электроэнергию пе­ременного тока. Впервые турбогенераторы трех­фазного тока с цилиндрическим ротором появи­лись в 1900-1901 гг. После этого шло их бы­строе развитие как по конструкции, так и по рос­ту единичных мощностей. Крупнейшие турбоге­нераторы в период 1900-1920 п. изготавлива­лись шестиполюсными из-за ограниченных воз­можностей металлургии по изготовлению поко­вок для роторов. В 1920 г. в США был изготовлен самый мощный для того времени

Рис. 6.2. Макет турбогенератора мощностью 1200 МВт с частотой вращения 3000 об/мин Костромской ГРЭС

турбогенератор мощностью 62.5 МВт, частотой вращения 1200 об/мин. Двухполюсные турбогенераторы выполнялись мощностью лишь до 5,0 МВт.

После 1920 г. основное развитие получили двух- и четырехполюсные турбогенераторы. Еди­ничные мощности этих машин быстро росли. Ве­дущими странами в области турбогенераторостроения были и остаются Англия, Германия, Россия, США, Франция, Швейцария, Япония.

Первый турбогенератор в нашей стране мощ­ностью 500 кВт был изготовлен в 1924 г. заводом «Электросила». В том же году были изготовлены еще два турбогенератора мощностью по 1500 кВт. Эти первые машины послужили основой для соз­дания в последующие годы серии турбогенерато­ров в диапазоне мощностей от 0,5 до 24 МВт при частоте вращения 3000 об/мин. За 1926 и 1927 гг. было сделано 29 таких турбогенераторов. Эти машины создавались под руководством выдаю­щегося инженера-организатора производства А.С. Шварца.

В начале 30-х годов на заводе «Электросила» была создана новая серия турбогенераторов с мощностями от 0,75 до 50 МВт. Существенное значение имело то, что при создании этой серии был широко использован опыт Западной Европы и США в турбогенераторостроении. По сравне­нию с предшествующей серией удалось снизить массу меди в обмотке статора на 30 %, а электро­технической стали на 10-15 %. При этом была уменьшена трудоемкость изготовления машин. Все электромагнитные, тепловые, вентиляцион­ные и механические расчеты были выполнены по новым расчетным методикам. Машины изго­товлялись из отечественных материалов. Уже к 1 января 1935 г. на отечественных тепловых электростанциях было смонтировано 12 таких турбогенераторов мощностью по 50 МВт.

На основе турбогенераторов последней се­рии были проведены разработки и началось изготовление быстроходных турбодвигателей мощностью от 1 до 12 МВт с частотой вращения 3000 об/мин для турбовоздуходувок и турбоком­прессоров.

Особое значение имеет цикл исследований и разработок, завершившихся изготовлением в 1937 г. самого мощного в мире турбогенерато­ра на 100 МВт с частотой вращения 3000 об/мин и косвенным воздушным охлаждением. Основ­ные трудности были связаны с ротором. Метал­лурги справились с созданием поковки больших размеров из высококачественной стали, а электромашиностроители -с ее механической обра­боткой- потребовавшей исключительно высокой точности.

Под руководством Р.А. Лютера и А.Е. Алек­сеева были выполнены расчеты и разработаны конструкции предвоенных серий турбогенераторов и отдельных машин.

В последующие годы возникла необходи­мость в освоении турбогенераторов большей мощности - 200 и 300, а в последующие годы 500, 800, 1000 и даже 1200 МВт при частоте вра­щения 3000 об/мин (рис. 6.2). Основные пробле­мы при создании турбогенераторов таких мощ­ностей создает ограничение диаметра ротора и расстояния между его опорами. В первом случае ограничение обусловлено механической проч­ностью, а во втором случае - вибрациями. В этих условиях увеличение мощностей достигает­ся за счет применения более интенсивных спо­собов охлаждения, позволяющих повысить плотность тока в обмотках. Сложность при этом состоит в необходимости не только сохранения, но и некоторого повышения КПД, а также умень­шения вибраций. Все это потребовало очень большого объема теоретических и эксперимен­тальных исследований, создания опытных ма­шин и строительства уникальных испыта­тельных стендов.

Исследования, разработки и производство мощных турбогенераторов проводились в СССР на трех заводах: «Электросила» (г. Ленинград), «Электротяжмаш» (г. Харьков) и «Сибэлектромаш» (г. Новосибирск). На каждом заводе созда­вались свои конструкции и технологические процессы.

На заводе «Электросила» впервые в мировой практике было предложено и освоено водород­ное охлаждение роторов с заборниками и де­флекторами, а также водяное охлаждение обмот­ки статора. Все работы проходили вначале под руководством главного инженера завода Д.В. Ефремова, главных конструкторов Е.Г. Ко­мара и Н.П. Иванова, а затем главного инженера Ю.В. Арошидзе, главного конструктора турбоге­нераторов Г.М. Хуторецкого и руководителя на­учно-технических и опытно-конструкторских работ завода Л.В. Куриловича. Водород является лучшим хладагентом по сравнению с воздухом. Использование водорода началось с турбогене­ратора мощностью 100 МВт и частотой враще­ния 3000 об/мин, который был изготовлен в 1946 г. Он имел косвенное водородное охлажде­ние для роторной и статорной обмоток. Вполне естественно, что система охлаждения сердечни­ка статора была в принципе такой же, как и при воздушном охлаждении. Потребовался переход от косвенного охлаждения обмоток к непосредственному. В катушках ротора выполнялись диа­гональные каналы, подача водорода в которые осуществлялась заборниками, а отвод - дефлек­торами. Заборники и дефлекторы - клинья для крепления обмотки с профильными отверстиями для прохождения газа. При увеличении мощно­стей требовалось повышение давления водоро­да. Таким образом, газ непосредственно сопри­касался с медью ротора. Стержни обмотки статора выполнялись из полых медных провод­ников, между которыми укладывались сплош­ные проводники. Вода, протекая по полым про­водникам, обеспечивала непосредственное охла­ждение статорной обмотки.

Для радикального снижения вибраций кор­пусов машин применялась эластичная связь между сердечником и корпусом. Это достига­лось с помощью продольных прорезей в ребрах прямоугольного сечения, на которых собирается сердечник.

Особые трудности возникли при создании турбогенератора мощностью 800 МВт. В связи е очень большими электродинамическими сила­ми и условиями работы, близкими к резонанс­ным, оказались неприемлемыми обычные спосо­бы крепления лобовых частей обмоток. Моно­литное крепление было достигнуто с помощью новых крепящих материалов: мягкого материа­ла, формирующегося при комнатной температу­ре, т.е. в процессе изготовления машины, и твер­деющего при повышенной температуре, а также самоусаживающихся лавсановых шнуров.

Под руководством А.Б. Шапиро и И.А. КадиОглы были разработаны оригинальные турбоге­нераторы с еще более интенсивным водяным ох­лаждением обмоток ротора и статора, сердечни­ка статора и некоторых конструктивных элемен­тов. Первый турбогенератор с полностью водя­ным охлаждением мощностью 63 МВт и часто­той вращения 3000 об/мин был введен в эксплуа­тацию в 1969 г. В дальнейшем были сделаны еще три таких машины. В 1980 г, был включен турбо­генератор мощностью 800 МВт и частотой вра­щения 3000 об/мин. В дальнейшем начали рабо­тать еще четыре машины. В их конструкции по­дача и слив воды осуществлялись помимо вала. Вода из неподвижной трубы поступает в зону фасонного кольца на роторе и удерживается в нем центробежными силами. Далее вода идет в нижние выводы катушек из прямоугольных проводов с отверстиями и под действием центро­бежных сил попадает в верхние выводы и слив­ное кольцо. Такая система называется самона­порной. Следует заметить, что во всем мире по­дача воды в обмотку ротора и ее отвод про­исходят через отверстия в валу, что делает кон­струкцию очень сложной и менее надежной. Преимуществом этого класса турбогенераторов является исключение водорода и заполнение корпуса воздухом при атмосферном давлении.

На заводе «Электротяжмаш» (г. Харьков) разработки и изготовление турбогенераторов мощностью 200, 300 и 500 МВт и частотой вра­щения 3000 об/мин проводились главным конст­руктором завода Л.Я. Станиславским, замести­телем главного конструктора В.С. Кильдишевым, главным инженером Н.Ф. Озерным и на­чальником производства И.Г. Гринченко. Мето­ды расчета турбогенераторов, особенно торце­вой зоны, были развиты заведующим отделом Института электродинамики Академии наук УССР И.М. Постниковым.

В машине мощностью 200 МВт ротор с водо­родным, а статор - с водяным охлаждением. В турбогенераторе мощностью 300 МВт исполь­зуется непосредственное водородное охлажде­ние как для роторной, так и для статорной обмо­ток. В роторе используется аксиально-радиаль­ная вентиляция. В стержне статорной обмотки прокладываются тонкостенные стальные труб­ки, по которым проходит газ- В турбогенерато­рах мощностью 500 МВт обмотки статора и ро­тора образованы из полых и сплошных провод­ников. Вода подается в обмотку ротора и отво­дится из нее через отверстия в валопроводе.

На заводе «Сибэлектротяжмаш» (г. Новоси­бирск) был освоен турбогенератор мощностью 500 МВт и частотой вращения 3000 об/мин с мас­ляным охлаждением обмотки статора и сердеч­ника и водяным охлаждением обмотки ротора. Внутрь расточки статора вводится и герметично закрепляется в щитах цилиндр из стеклоленты. Масло с одной стороны статора проходит в дру­гую через каналы в стержнях обмотки и через ак­сиальные отверстия в сердечнике. Вода к обмот­ке ротора поступает через валопровод. Напряже­ние статорной обмотки равно 35 кВ, что сущест­венно облегчает токоподводы от генератора к повышающему трансформатору.

В организацию производства, методы расче­та, технологические процессы и конструкции рассмотренных уникальных турбогенераторов решающий вклад внесли П.Е. Базунов, К.Ф. Потехин и К.И. Масленников.

Существенные работы были проведены на Лысьвенском турбогенераторном заводе (г. Лысьва, Пермской обл.) в области турбогенераторов средней мощности. Особенно высокую оценку получили синхронные двухполюсные двигатели мощностью 630-12 500 кВт, напря­жением 6 и 10 кВ. Они применяются в приводах нефтяных насосов магистральных нефтепрово­дов, нагнетателей магистральных газопроводов, воздуходувок доменных печей, газовых ком­прессоров химических производств и др. Их ос­воение было закончено в 1980 г.

По сравнению с предыдущей серией масса двигателей новой серии снижена в 1,5-2 раза, повышен КПД на 0,5-2 %, снижена трудоем­кость изготовления в 1,5 раза и увеличен объем выпуска в 3 раза без увеличения производствен­ных площадей. По своему техническому уровню двигатели превысили показатели лучших миро­вых образцов. Наиболее существенный вклад в расчеты и конструкции двигателей внесли Э.Ю. Флейман и В.П. Глазков, а в системы воз­буждения - С.И. Логинов.

Подводя итоги исторического развития тур­богенераторов в послевоенные годы, следует от­метить успехи научно-технической деятельно­сти коллективов нескольких заводов, в результа­те чего были созданы и освоены в производстве турбогенераторы различных конструкций. Одна­ко наличие различных конструкций усложняет проектирование и строительство электростан­ций, монтажные, наладочные и ремонтные рабо­ты, а также обеспечение запасными частями. По­этому в рамках одной страны становится жела­тельным выпуск машин единой конструкции, В зарубежной практике (Франция, Англия, Шве­ция, Швейцария) эта проблема решается путем объединения электротехнических фирм и спе­циализации производства. В нашей стране с це­лью создания единой унифицированной серии турбогенераторов для всех заводов была разра­ботана и выполнена обстоятельная программа исследований и разработок машин единой серии (научный руководитель И.А. Глебов, зам. науч­ного руководителя Я.Б. Данилевич, главный конструктор ГМ. Хуторецкий, главный технолог Ю.В. Петров). Требования к новой серии форму­лировались с участием специалистов стран-членов Совета экономической взаимопомощи. В основу серии были положены турбогенераторы с водоводородным охлаждением производства объединения «Электросила», поскольку их чис­ло было наибольшим и имелся положительный опыт их эксплуатации во всем диапазоне мощно­стей от 63 до 800 МВт при частоте вращения 3000 об/мин. Освоение турбогенераторов еди­ной унифицированной серии началось в 1990 г.

К наиболее крупным достижениям зарубеж­ных фирм в области турбогенераторов относят­ся следующие. Фирма «Альстом-атлантик» вы­пустила серию четырехполюсных турбогенера­торов мощностью 1600 МВ∙А для атомных электростанций; предельная мощность четы­рехполюсных турбогенераторов для атомных электростанций фирмы «Сименс» составляет около 1300 МВ ∙А. Фирма АВВ освоила выпуск турбогенераторов мощностью 1500 МВ ∙А, 1800 об/мин, 60 Гц и турбогенераторов мощно­стью 1230 МВ∙А, 3000 об/мин, 50 Гц. Амери­канские и японские фирмы выпускают турбо­генераторы наибольшей мощностью около 1100 МВ А- Все фирмы, за исключением «Си­менс», используют водородно-водяное охлаж­дение- Фирма «Сименс» применяет водяное ох­лаждение для обмоток не только статоров, но и роторов.

Необходимо обратить внимание на все уве­личивающийся выпуск турбогенераторов

Рис. 6.3. Общий вид ударного турбогенератора (инерционного накопителя энергии)

1,1,3 - подшипник, статор и вал ротора турбогенератора 200 МВт соответственно; 4,5.6 - подшипник, вал, кожух маховика соответственно ; 7 - асинхронный двигатель; 8 - фундаментные плоты

средних мощностей - до 250 МВт для тепловых электростанций с комбинированным циклом (две газовые турбины и одна паровая).

В последние годы началось использование парогазовых установок. Поскольку предельная мощность газовых турбин в настоящее время со­ставляет 150-200 МВт, то парогазовая система мощностью 450-600 МВт состоит из трех бло­ков: два с газовыми турбинами и один с паровой. Поскольку для таких блоков нужны турбогенера­торы сравнительно небольших мощностей (150-200 МВт), для упрощения их конструкции вернулись к воздушному охлаждению. Первый турбогенератор мощностью 150 МВт и частотой вращения 3000 об/мин с воздушным охлаждени­ем изготовлен для Северо-Западной ТЭЦ в 1996 г. в АО «Электросила».

К особому классу относятся ударные турбо­генераторы кратковременного действия. Они применяются для испытания выключателей, для экспериментальных установок термоядерного синтеза на базе токамаков, крупных плазмотронов, установок ускорения масс и др. Для экспериментального токамака со сверхсильным полем были разработаны и выполнены четыре двух­полюсных турбогенератора мощностью по 200 МВт (242 МВ А). Такие турбогенерато­ры созданы впервые в мировой практике (рис. 6.3). В них применяется косвенное воздуш­ное охлаждение. С целью снижения габаритов генераторы выполнены с повышенным насыще­нием магнитной цепи. На общем валу с генерато­ром находится инерционный накопитель, сде­ланный на основе ротора турбогенератора мощ­ностью 800 МВт. Запасенная энергия в генерато­ре равна 100, а в маховике - 800 МДж. Удельная энергоемкость ротора генератора составляет 5, а маховика - 10 Дж/г Длительность импульса равна 5 с. Во время выдачи накопленной энергии частота вращения уменьшается до 70 %. Таким образом, используется 50 % энергии. Удельная стоимость накопленной энергии получается наи­меньшей по сравнению со стоимостью энергии других видов накопителей. Количество энергии может быть доведено до 2500 МДж за счет ис­пользования более прочной стали и увеличения диаметра маховика. Пуск установки осуществ­ляется асинхронным двигателем с фазным рото­ром на валу агрегата или преобразователем час­тоты с питанием от сети. И.А. Глебовым, Э.Г. Кашарским и Ф.Г. Рутбергом разработаны методы расчета, выполнены технические прора­ботки различных вариантов и их сопоставление, обоснование турбогенераторного исполнения в отличие от гидрогенераторного, применяемого в зарубежной практике . Проект был выпол­нен Г.М. Хуторецким, а металлургические про­блемы решены А.М. Шкатовой.

Следует заметить, что в начале 20-х годов XX в. русские ученые М.П. Костенко и П.Л. Ка­пица сделали проект и осуществили первый ударный генератор для создания сильных маг­нитных полей.

В Томском политехническом институте под руководством и при непосредственном участии Г.А. Сипайлова была создана научная школа в области электромашинного генерирования им­пульсных мощностей в автономных режимах . Были проведены многочисленные исследования, разработаны методы расчета и создан ряд импульсных генераторов. К числу оригинальных решений относятся электрома­шинные генераторы с неявнополюсным шихто­ванным ротором и импульсной форсировкой возбуждения за счет намагничивания в несим­метричных режимах при последовательных ком­мутациях обмоток статора и ротора.

Принципиально новым направлением явля­ются сверхпроводниковые турбогенераторы, имеющие в 2 раза меньшую массу и потери. Вполне естественно, что вначале создавались опытные сверхпроводниковые машины неболь­шой мощности (синхронные, униполярные, по­стоянного тока) .

Во ВНИИэлектромаше были созданы сле­дующие сверхпроводниковые машины: коллек­торный двигатель постоянного тока мощностью 3 кВт, синхронный генератор мощностью

Рис. 6.4. Испытательный стенд со сверхпроводниковым турбогенератором мощностью 20 МВ∙А (в центре рисунка)

18 кВт, униполярный генератор с током 10 кА при напряжении 24 В и синхронный генератор мощностью 1200 кВт. Первые четыре машины были созданы под руководством и при непосред­ственном участии В.Г. Новицкого и В.Н, Шахтарина. В разработку и исполнение двигателя по­стоянного тока 3 кВт существенный вклад внес также Г.Г. Бортов. Синхронный генератор мощ­ностью 1200 кВт был разработан и выполнен под руководством В.В. Домбровского.

Первый генератор средней мощности (20 МП А) был создан во ВНИИэлектромаше в 1979г. (рис. 6.4) . Машина была подробно исследована и испытана на стенде института и при работе в Ленэнерго. Ротор име­ет обмотку из ниобий-титанового сплава. Она охлаждается жидким гелием (4,2 К), который по­ступает внутрь ротора через неподвижную труб­ку в центральном отверстии вала. Возврат гелия в газообразном состоянии происходит также через вал. Для защиты сверхпроводящей обмотки от теплопритока из внешней среды ротор имеет три цилиндра, пространство между которыми вакуумировано.

Научно-исследовательские и опытно-конст­рукторские работы во Всесоюзном научно-ис­следовательском институте электромеханики (ВНИИЭМ) завершились созданием ряда сверх­проводниковых машин. Первая машина имела мощность 600 Вт. Это был генератор со сверхпроводящей обмоткой возбуждения на ста­торе и трехфазной обмоткой на роторе. Следую­щей машиной был коллекторный электродвига­тель мощностью 25 кВт, а далее генератор пере­менного тока мощностью 100 кВт со сверхпроводящим индуктором, криодвигатель переменного тока 200 кВт с неподвижным криостатом, мо­дельные синхронные генераторы с вращающим­ся криостатом, уникальный синхронно-асин­хронный двигатель с передачей вращающего мо­мента без механических сочленений машин. Руководителем, организатором производства и со­исполнителем исследований и разработок был Н.Н. Шереметьевский. Основным разработчи­ком сверхпроводящих индукторов являлся А.С. Веселовский, а якорей - А.М. Рубенраут.

Создателем синхронного сверхпроводнико­вого неявнополюсного генератора мощностью 200 кВт на харьковском заводе «Электротяжмаш» был В.Г. Данько.

В Физико-техническом институте низких температур (ФТИНТ, г. Харьков) инициатором, организатором и научным руководителем всех работ в области использования явления сверх­проводимости был Б.И. Веркин. Сущест­венное значение для исследований, разработок и исполнения машин имели труды Ю.А. Кири­ченко, А.В. Погорелова и Г.В. Гаврилова.

Во ФТИНТ были созданы: криотурбогенератор мощностью 200 кВт с неподвижной обмоткой возбуждения и теплым вращающимся якорем, турбогенератор мощностью 2 и 3 МВт со сверх­проводниковыми роторами (совместно с объеди­нением «Электросила»). Последние две машины создавались с участием специалистов объедине­ния «Электросила» И.Ф. Филиппова и И.С. Жи­томирского. Большая работа проведена в облас­ти униполярных сверхпроводниковых машин: двигатель с якорем дискового типа мощностью 100 кВт, машина мощностью 150 кВт с цилинд­рическим ротором, а затем двигатели мощнос­тью 325 и 850 кВт.

Существенный вклад в теорию и методы рас­чета электрических машин с использованием яв­ления сверхпроводимости внесли ученые Мос­ковского авиационного института А.И. Бертинов, Б.Л. Алиевский, Л.К. Ковалев и др.

В генераторе 20 МВ А внешний цилиндр ротора имеет комнатную температуру, внутрен­ний - температуру жидкого гелия, а средний - 70 К. Обмотка образована рейстрековыми ка­тушками разной ширины и находится при вра­щении в гелиевой ванне, образованной внутрен­ним цилиндром и торцевыми частями. В связи с очень большой МДС отпадает необходимость в использовании для ротора стали. В этих услови­ях статор можно делать беспазовым. что увели­чивает количество меди и мощность приблизи­тельно в 2 раза. Для малой внешней магнитной индукции в статоре применяется ферромагнит­ный экран. Исследования, разработка методов расчета и технологических процессов, изготов­ление и испытания проводились под руково­дством и при непосредственном участии И.А. Глебова, Я.Б. Данилевича, А.А. Карьшова, Л.И. Чубраевой и В.Н. Шахтарина.

И.А. Глебов был научным руководителем, Я.Б. Дакилевич - главным конструктором, А.А. Карымов - автором новых методов меха­нических расчетов, Л.И. Чубраева - специали­стом, ответственным за изготовление статора и испытания сверхпроводникового турбогенера­тора в энергосистеме. В.Н. Шахтарин - специа­листом, ответственным за разработку и изготов­ление ротора. Поскольку низкие температуры получаются с помощью криогенной техники, то творческое участие в разработках и испыта­ниях генератора мощностью 20 МВ А специа­листов НИИ «Гелиймаш» И.П. Вишнева, А.И. Краузе имело очень важное значение.

И.П. Вишнев осуществил разработку и руко­водство работами по созданию устройств крио­генной техники, А.И. Краузе провел наладочные работы и испытания криогенных устройств. Осо­бое значение имело их участие в работах по оп­ределению минимальной длительности захолаживания ротора, допустимой по условиям меха­нической прочности его элементов.

Под руководством И.Ф. Филиппова как раз­работчика методов расчета теплофизических процессов и руководителя работ по созданию уникального криогенного стенда и Г.М. Хуторецкого как главного конструктора в объедине­нии «Электросила» был создан сверхпроводни­ковый турбогенератор мощностью 300 МВт, и частотой вращения 3000 об/мин. Статор и ротор прошли успешные испытания при температуре жидкого азота. Однако недостаточная газоплот­ность наружного цилиндра не позволила иметь нужный вакуум и выйти на расчетный режим с жидким гелием.

Сверхпроводниковые турбогенераторы от­носятся к будущему поколению турбогене­раторов. Работы в этом направлении ведутся в ряде стран.

США, государства Западной Европы и Япо­ния имеют существенные успехи в области ис­следований и разработок сверхпроводниковых электрических машин. Наибольших успехов в области сверхпроводниковых турбогенераторов достигли Япония и США. В ФРГ были созданы основные элементы сверхпроводникового тур­богенератора мощностью 800 МВ А. В Японии имеется национальная программа с конечной за­дачей завоевания мирового рынка в области турбогенераторостроения на основе использования явления сверхпроводимости. В настоящее время в Японии в стадии изготовления находятся три сверхпроводниковых турбогенератора мощно­стью по 70 МВ А каждый. К наибольшим дос­тижениям в области униполярных сверхпровод­никовых машин относятся результаты работы английской фирмы IRD (униполярный двигатель мощностью 2,42 МВт).

Проведенный выше обзор в области сверх­проводниковых машин, и в первую очередь тур­богенераторов, показывает, что наша страна на­ходится на передовых позициях в мире.

1. Технические характеристики турбины

Тип конденсационная турбина с отбором пара
количество корпусов 1
количество клапанов экстренного торможения
количество клапанов сопловой группы
2
4
ступень регулирования:
 тип
 средний диаметр
импульсный
800 мм
количество держателей лопаток
количество ступеней реакции
2
14
средние диаметры
 первая ступень
 последняя ступень
570 мм
1000 мм
 длина лопатки последней ступени 285 мм
основной пар до турбины (входной фланец)
 давление
 температура
12 бар (изб.)
340 °С
количество выпусков
давление сброса 1 при номинальной мощности
2
6,2 бар изб
давление сброса 2 при номинальной мощности
давление выхлопа при номинальной мощности
1 бар изб
0,11 бар изб
номинальная мощность
номинальная скорость
12000 кВт
5000 мин -1
приводимый механизм генератор
соединение с помощью трансмиссии
макс. расход основного пара 18,92 кг/с

1.1. Технические характеристики редуктора

1.2. Технические характеристики генератора

конструкция
конструкция согласно
IM 1001
IEC-UTE
макс. высота
возбуждение
1000 м
бесщеточное
класс защиты
класс изоляции
IP 54
F
температурный класс
расположение охладителя
B
установлен на статор
количество охладителей
производительность охладителей
2
60 % каждый
тип тока
полная мощность
3ф / синхронный
15000 кВА
номинальная мощность
коэффициент мощности (cos φ)
12000 кВт
0,8
напряжение
частота
10,5 кВ
50 Гц
скорость
охлаждение
1500 мин -1
охладитель воздух / вода
качество охлаждающей воды
температура охлаждающей воды на входе
СТ
25 °С
расход охлаждающей воды прибл. 60 м3/ч
подшипник: подшипник скольжения со смазкой маслом (общая поставка масла вместе с турбиной)

1.3 Подача масла

Для обеспечения турбины и приводимого механизма смазочным маслом / рабочим маслом / маслом регулятора оборотов / подъемным маслом. Качество масла турбины согласно DIN 51515 тип ISO класс вязкости VG46.

прибл. давление смазочного масла 3,5 бар
прибл. Давление масла контура управления 160 бар
прибл. давление подъемного масла 100 бар
прибл. давление резервного масла 2 бар
содержимое маслобака 6000 л
количество первой заправки маслобака 6600 л
количество циркуляций (в час) ˂8 1/ч
ширина сетки маслофильтра 25 мкм
макс. дифф. давление на маслофильтре 1 бар
охладитель масла 2 х 100 %
расположение охладителя масла вертикальное
температура охлаждающей воды на входе 30 °С
прибл. потеря давления на водной стороне 0,25 бар
качество охлаждающей воды СТ
прибл. расход охлаждающей воды 55 м3/ч

1.4 Технические характеристики конденсатора

1.5 Технические характеристики насоса конденсата

1.6 Система откачивания

Тип паровой эжектор
основной эжектор
 количество эжекторных групп 2
 количество ступеней в группе 2
 количество эжекционных конденсаторов
 исполнение
1
горизонтальное
пусковой эжектор
 количество эжекторов 1
 количество ступеней 1
 выброс пара в атмосферу через глушитель
рабочий пар
 давление 6,2 бар изб
 температура 279 °С
 количество 0,1 кг/с
охлаждающая среда конденсат
температуры охлаждающей среды на входе
 номинальная 47 °С
 макс. 70 °С

2. Рабочие данные

2.1 Условия пара

Номинальный основной пар до турбины (входной фланец)

*) исходное давление не должно превышать:
105% от номинального давления в любое время, но среднее давление не превышает 100% за любые 12 месяцев работы
120% от номинального давления в качестве одномоментного значения, но не более 12 часов в течение 12 месяцев работы
**) превышение температуры не должно быть больше чем:

Ни в коем случае температура не должна превышать номинальную больше, чем на 28 °С.

Если пар подается к любой конечной точке турбины через 2 или более параллельных трубы, температура пара в любой трубе не должна отличаться от температуры в любой другой трубе больше, чем на 17 °С, кроме того, что в случаях колебания, продолжительностью не превышающего 15 мин, разница температур в самой горячей трубе не должна превышать пределов, указанных ранее.

2.2 Качество пара

Значения, указанные в директиве VGB (VGB-R 450L - издание 1988) для питательной воды котлов, воды котлов и пара из водотрубных котлов, не должны превышаться в ходе постоянной эксплуатации.

Для постоянной эксплуатации требования к пару для паровых турбин следующие:

*) при 25 °С, в местном потоке с постоянно работающей точкой измерения за сильнокислым катионообменником
(применимо только к воде, не содержащей CO2).
Превышение значений VGB даже в течение короткого времени может привести к образованию сильных соляных отложений, что вызывает механические и коррозионные повреждения.

2.3 Рабочие характеристики

Следующие данные относятся к номинальным параметрам основного пара на входном фланце турбины. Данные о производительности относятся к контактам турбина/генератор муфта/генератор. Указанные данные по давлению рассчитаны по выходным патрубкам турбины.

Точка нагрузки А
Свежий пар
давление бар (изб.) 12
температура °С 340
расход пара кг/с 18,92
Отбор 1
давление бар (изб.) 6,2
количество кг/с 1,166
Отбор 2
давление бар (изб.) 1
количество кг/с 1,319
Выпускной пар
давление бар (изб.) 0,11
количество кг/с 16,41
Охлаждающая вода конденсатора
расход кг/с 695
температура на входе °С 30
Генератор
частота Гц 50
напряжение кВ 10,5
коэффициент мощности cos φ 0,8
температура охл. воды на входе °С 25
Электрическая мощность (контакты генератора) кВт 12000

2.4 Гарантия

2.4.1 Гарантия по термодинамике

Мы гарантируем соблюдение электрической мощности, указанной в столбце А в разделе «Рабочие характеристики», при условии что требуемые регулирующие клапаны полностью открыты. Значения применимы к указанным условиям.
Качество пара согласно нормам VGB (ассоциация операторов ЦЭС).
К приемочным испытаниям применяются следующие стандарты в их последних версиях: DIN 1943 VDI Нормы по паровым турбинам.
Допуск на макс. производительность: ±0 %
Расчетные допуски: ±0 %
Допуски на измерения согл. DIN

2.4.2 Гарантия по вибрации

Динамическая балансировка ротора согласно ISO 1940 класс ротора G2,5
Требуемый уровень вибрации согласно ISO 10816 часть 1 и ISO 10816 часть 3.
Вибрация стойки подшипника во время непрерывной эксплуатации согласно ISO 10816 часть 1 и 3.

2.5 Материальное исполнение

2.5.1 Турбина

2.5.2 Подача масла

2.5.3 Конденсационная установка

2.6.2 Соединения труб

Все соединения труб спроектированы по стандартам DIN/EN

2.6.3 Веса (приблизительные)

3. Техническое описание

3.1 Турбина

Турбина конденсационная с отбором пара в исполнении с одним цилиндром и одним выпуском, одной активной ступенью и многоступенчатым реактивным лопаточным аппаратом, рассчитана на высокую эффективность работы и максимально надежна. Турбина соединена с генератором при помощи редуктора.

3.1.1 Корпус регулирующего клапана

Корпус регулирующего клапана высокого давления приварен к верху цилиндра. Он снабжен клапаном экстренного торможения, паровым фильтром и регулирующими клапанами. Паровой фильтр расположен в клапане экстренного торможения. Паровой фильтр препятствует доступу механических частиц в турбину. Второе его действие заключается в том, что минимизируются вихревые потоки пара и поэтому сокращается вибрация золотников клапана.

Клапан экстренного торможения спроектирован как диффузорный клапан с управляющим клапаном. Конструкция управляющего клапана делает возможной эксплуатацию без нагрузки на полной скорости (для привода генератора). Клапан экстренного торможения приводится в действие масляно-гидравлическим серводвигателем, которым управляет система управления турбины. Таким образом, становится возможна контролируемая эксплуатация турбины при помощи клапана экстренного торможения.

После прохождения через клапан экстренного торможения, пар проходит через регулирующие клапаны.

Регулирующие клапаны сконструированы как диффузорные клапаны и приводятся в действие масло-гидравлическими серводвигателями.

Во время пуска регулирующие клапаны полностью открыты, и поток пара контролирует клапан экстренного торможения. Это позволяет задействовать полный пуск, при котором пар подается одновременно во все сопловые коробки. Такой режим пуска делает возможным одновременное нагревание коллектора пара и сопловых коробок. Поэтому тепловой стресс из-за разницы температур будет минимизирован и время пуска будет сокращено.

3.1.2 Сопловые коробки

Сопловая коробка имеет горизонтальную линию разъема, и детали соединены между собой болтами. Коробка разделена на сопловые группы. На каждую группу подается пар из отдельного регулирующего клапана. Во время изменений нагрузки турбины секции сопловой коробки подвергаются большим колебаниям температуры, кто является причиной тепловой нагрузки. Чтобы минимизировать эти нагрузки, сопловые коробки вставлены в цилиндр без расширения.

3.1.3 Цилиндр

Цилиндр имеет горизонтальную линию разъема, образуя основание и крышку. Они прикручены друг к другу соединительными болтами цилиндра. Наверху цилиндра находится корпус регулирующего клапана, снизу сопла для контролируемого и неконтролируемого отбора пара и выходного пара. В центре расположен фланец на двух частях для соединительных болтов цилиндра. В эти фланцы вмонтированы поддерживающие кронштейны. Задняя часть цилиндра разделена радиально и закреплена болтами.

Выпускная часть стоит на двух опорах с плитами основания на фундаменте. Эти задние опоры служат фиксированной точкой опоры турбины.

Основание корпуса соединено со стойкой подшипника с помощью болтов, которые поддерживают правильное осевое и поперечное положение корпуса турбины с помощью продольного ключа между стойкой и плитой основания. Стойка подшипника может свободно скользить по оси на плите основания, но удерживается от перемещения в поперечном направлении с помощью осевого ключа, расположенного на продольной центральной линии.

3.1.4 Ротор

Ротор турбины изготавливается из цельного куска кованого стального сплава, прошедшего термообработку и предварительную механическую обработку. После предварительной механической обработки проводится последний сеанс термообработки и выполняется испытание на термостойкость. После этого выполняется окончательная механическая обработка. Лабиринтные уплотнения будут вставлены в часть балансировочного поршня и сальниковых уплотнений. В задней части предусмотрена муфта для силовой передачи. Балансировка выполняется, когда ротор полностью механически обработан, снабжен лопатками и собран.

3.1.5 Комплект лопаток турбины

Комплект лопаток формирует проход для пара в турбине. Они состоят из неподвижных частей (направляющие лопатки) и вращающихся частей (лопатки ротора). Сопла к первой ступени вставлены в сопловые коробки и дают частичный доступ к контрольной ступени. Направляющие лопатки вставлены в держатели лопаток, лопатки ротора - в ротор. Вращающиеся и неподвижные части разделены соответствующими зазорами.

3.1.6 Балансировочный поршень

Балансировочный поршень состоит из неподвижной и вращающейся частей. Вращающаяся часть балансировочного поршня входит в ротор и предназначена для снижения осевых сил лопаток турбины до низких значений. Оставшаяся осевая нагрузка ложится на упорный подшипник при любых рабочих условиях. Неподвижная часть имеет горизонтальную линию разъема и скреплена болтами. Балансировочный поршень снабжен лабиринтными уплотнениями, подробно описанными в разделе «Сальники». Утечки пара, проходящие балансировочный поршень, возвращаются в области более низкого давления в корпусе турбины.

3.1.7 Уплотнения

Уплотнения лабиринтного типа обеспечивает герметичность в местах, где вал ротора проходит через цилиндр. Уплотнительные полосы вставляются во вращающуюся и неподвижную части. Конструкция уплотнения позволяет легко их заменить. Для замены балансировочного поршня и внутренних лабиринтных уплотнений необходим подъем корпуса.

3.1.8 Стойки подшипников

Стойки подшипников находятся на концах цилиндра и имеют горизонтальный разъем. Крышка прикреплена к основанию болтами и просто снимается для обслуживания (без необходимости открывать цилиндр или снимать изоляцию корпуса). Передняя стойка подшипника снабжена упорным подшипником и подшипником скольжения, редуктором для основного маслонасоса и датчиками осевого смещения, вибрации вала, температуры и скорости подшипника Неподвижная задняя стойка подшипника снабжена подшипником скольжения, валоповоротным устройством и датчиками вибрации вала и температуры подшипника.

3.1.9 Подшипники

Подшипники скольжения - разъемного типа сделаны из антифрикционного металла (белого металла) со стальной оболочкой. Исполнение седла клапана позволяет легко отцентровать подшипник, вставляя вкладыши желаемой толщины под четыре регулировочных клина, расположенных под углом 90 градусов друг от друга.

Ротор прикреплен к передней стойке подшипника с помощью самоустанавливающегося сегментного упорного подшипника двойного действия, подходящего для обоих направлений вращения и упора. На каждый подшипник будет подаваться масло для смазки и охлаждения.

3.1.10 Изоляция турбины

Части турбины, работающие при паре высокой температуры, будут покрыты изоляционным материалом. Изоляция сделана из матов из стекловолокна и заполнена минеральной ватой (без асбеста). Предусмотрена двухслойная изоляция корпуса, внешний слой покрывается алюминиевой фольгой.

3.2 Передача

3.2.1 Редуктор

Редуктор находится между турбиной и приводимым механизмом. Он предоставляется для понижения скорости турбины до скорости приводимого механизма. Конструкция - одноступенчатая горизонтальная с осевым смещением и шевронная зубчатая передача. Валы ведущей и ведомой шестерни снабжены двумя подшипниками скольжения каждый и втулками из белого металла. Смазка происходит от общей подачи масла.

Корпус имеет горизонтальный разъем, крышка прикреплена к нижней части болтами.

3.2.2 Высокоскоростная муфта

Расположена между турбиной и редуктором. Смазка происходит от общей подачи масла на турбину. Муфта снабжена маслонепроницаемой крышкой. Обратное масло течет к стойкам подшипников турбины.

3.2.3 Валоповоротное устройство

Валоповоротное устройство приводится в действие двигателем переменного тока. Оно будет в работе после остановки турбины и должен оставаться в работе до пуска турбины, или когда турбина охлаждается.

Для гарантии наилучшего баланса охлаждения ротора валоповоротное устройство используется во время медленного вращения ротора. Это предотвращает сгибание ротора во время охлаждения. Также, когда работает валоповоротное устройство, минимизируется сгибание цилиндра с помощью вентиляции в турбине.

Оно снабжено устройствами, которые допускают ручное управление, только когда турбина находится на нулевой скорости, и переходит в автоматический режим, когда скорость повышается.

3.3 Система паровых уплотнений

Для предотвращения попадания воздуха из атмосферы в часть низкого давления турбины (зона вакуума) в уплотнение подается уплотняющий пар. Уплотняющий пар регулируется с помощью регулирующих клапанов, по одному на уплотнение. Пар среднего или низкого давления будет использоваться в качестве первичного пара.

Одна часть уплотнительного пара проходит через внутреннюю часть уплотнения и течет по направлению к конденсатору. Остальная часть уплотняющего пара проходит через внешнюю часть уплотнения и течет по направлению к конденсатору уплотняющего пара.

Пар и воздух после сальников турбины направляется во вторую ступень эжектора-конденсатора пара или поверхностный горизонтальный конденсатор уплотняющего пара с помощью вытяжного вентилятора. Утечки пара из уплотнений турбины направляются в кожух и конденсируются охлаждающей средой. Конденсат дренируется в основной конденсатор. Утечки воздуха, включая небольшое количество пара, выпускаются в атмосферу.

3.4 Маслосистема

Маслосистема - это комбинированная система смазочного, рабочего и управляющего масла. Она состоит из маслобака, насосов, фильтров, охладителей, клапанов регулирования давления, очистителя и соединительного трубопровода.

3.4.1 Маслонасосы

Основной маслонасос - приводимый в действие двигателем переменного тока, располагается на маслобаке.

Вспомогательный маслонасос (приводимый в действие двигателем переменного тока), располагается так же на маслобаке, автоматически берет на себя функцию основного маслонасоса в случае необходимости. Этот вспомогательный маслонасос автоматически запускается, когда падает давление масла подшипников.

Если вспомогательный маслонасос не может работать или не может запуститься, запускается аварийный масляный насос. Аварийный маслонасос рассчитан на подачу смазочного масла во время останова турбогенераторной установки, а также во время охлаждения ротора турбины.

Часть смазочного масла подается бустерными насосами (2 х 100%). Они создают необходимое давление для систем рабочего масла и управляющего масла. Рабочее масло используется для работы клапанов-регуляторов и клапана экстренного торможения с серводвигателями.

3.4.2 Контроль давления масла

Давление смазочного масла контролируется с помощью отдельного регулирующего клапана. Регулирующие клапаны работают на байпасе. Давление смазочного масла регулируется при помощи байпаса смазочного масла в маслобак. Рабочее масло контролируется насосом регулирующего масла.

3.4.3 Система подъемного масла

Насос подъемного масла, приводимый в действие двигателем переменного тока, используется во время работы валоповоротного устройства, а также во время пуска и останова турбогенераторной установки для подъема ротора, чтобы минимизировать трение в подшипниках ротора генератора.

3.4.4 Маслобак

Маслобак расположен рядом с турбиной.. Он рассчитан на весь объем масла для смазки и управления всего турбоагрегата. Он снабжен устройством для отделения воздуха. На крышке бака смонтированы маслонасосы и вытяжной вентилятор пара. Вентилятор поддерживает небольшое отрицательное давление в системе дренажа и в маслобаке.

3.4.5 Масляные охладители

Система оборудована двумя идентичными охладителями масла, каждый производительностью 100%. Переключение между охладителями во время работы происходит с помощью трехходовых клапанов.

Охладитель, не находящийся в работе, можно дренировать и очистить или заменить во время работы турбины.

3.4.6 Маслофильтр

Система оборудована двумя идентичными маслофильтрами для управляющего и смазочного масла, каждый производительностью 100%. Переключение между фильтрами во время работы происходит с помощью трехходовых клапанов.

Фильтр, не находящийся в работе, можно очистить или заменить во время работы турбины.

3.4.7 Маслопровод

Соединительный трубопровод включает в себя трубы между различными агрегатами маслосистемы. Включен трубопровод смазочного масла к турбине и генератору с обратными линиями масла к маслобаку. Также предусмотрен соединительный маслопровод в целях управления (линии управляющего и рабочего масла), включая обратные линии к маслобаку.

Соединительный трубопровод выполнен из углеродистой стали, трубопровод после фильтра выполнен из нержавеющей стали.

3.5 Поверхностный конденсатор

3.5.1 Общее описание

Конденсатор поверхностного типа с водяным охлаждения с отверстием для впуска пара наверху. Конденсатор может конденсировать весь пар из турбины в любых предусмотренных рабочих условиях.

Конденсатор рассчитан на низкую скорость пара по всей поверхности трубы. Распределение пара ко всем частям охлаждающей поверхности гарантирует высокую степень теплопередачи от пара к охлаждающей воде и наибольший возможный вакуум при данном количестве и температуре охлаждающей воды.

Конденсат, стекая с труб, позволяет достичь хорошей степени деаэрации конденсата.

Воздух и неконденсируемые пары в конденсаторе могут контактировать с трубами самой холодной части конденсатора. Максимальное охлаждение этих газов позволяет собрать их и вывести из конденсатора вакуумным насосом.

Сборник конденсата приварен ко дну кожуха конденсатора. Его функция - собирать и накапливать конденсат.

3.5.2 Кожух конденсатора

Кожух конденсатора рассчитан на вакуум и выдерживает внутреннее давление 1 бар (изб.). Предусмотрены подходящие отверстия для впуска пара из турбины и для удаления воздуха и конденсата. На концах кожуха присоединены трубные доски. Между трубными решетками в кожухе находятся несколько опорных пластин для опоры и минимизации вибрации труб.

Трубы конденсатора с обеих сторон крепятся к трубной решетке.

Конденсатор размещается на соответствующем фундаменте и соединен с выхлопным патрубком турбины.

3.5.3 Водяный рубашки

Водяные рубашки приварены к обоим концам кожуха.

В водяных рубашках расположены соединения для охлаждающей воды и соответствующие люки-лазы с крышками.

Внутреннее покрытие предотвращает коррозию.

3.5.4 Насосы конденсата

Предоставляются насосы конденсата, каждый производительностью 100%. Они расположены ниже конденсатора.

Тип насосов - центробежные горизонтальные насосы. Они имеют торцевой разъем и радиальное рабочее колесо. Исполнение - прямоточное одноступенчатое. Предоставляется уплотнение вала с соединением для уплотняющей воды для предотвращения попадания воздуха в систему конденсата (зона вакуума).

Соединения согласно стандарту DIN.

Насосы снабжены фильтрами на стороне всаса. Предоставляются изолирующие клапаны на стороне всаса (перед фильтром) и на стороне напора. Насосы приводятся в действие двигателем переменного тока и устанавливаются на плиту основания.

3.5.5 Воздушные эжекторы

Предусмотрены два двухступенчатых воздушных эжектора с паровым приводом для удаления неконденсируемых газов из кожуха конденсатора. Каждый эжектор двухступенчатого типа и устанавливается на кожух эжектора-конденсатора, который конденсирует пар двух ступеней. Конденсат возвращается в основной конденсатор. Трубы рассчитаны на передачу 100% конденсата, извлеченного из основного конденсатора.

Для пуска предоставляется дополнительный пусковой эжектор. Пусковой эжектор одноступенчатый, не конденсирующего типа. Эжектор имеет выпуск в атмосферу.

3.5.6 Система контроля уровня конденсата

Система контроля уровня конденсата регулирует постоянный уровень в конденсаторе.

Она состоит из контроллера уровня, клапана контроля выброса и клапана рециркуляции. Если поток конденсата меньше, чем требуемый минимальный расход насосов конденсата или минимальное требуемое количество для эжектора-конденсатора и конденсатора уплотнительного пара, открывается клапан рециркуляции и закрывается клапан контроля выброса.

Контроллер - электронного типа или РСУ. Регулирующие клапаны (клапан контроля выброса и рециркуляции) могут приводиться в действие электро- или пневмоприводами.

3.5.7 Соединительные трубопроводы

Соединительный трубопровод включает в себя трубы отвода конденсата из конденсатора, трубы отвода воздуха из конденсатора в эжектор, уплотняющей воды (конденсата) для уплотнений в вакуумной зоне (клапаны и насосы конденсата) и экстренную выпускную трубу с разрывным диском. Все соединительные трубы изготовлены из углеродистой стали.

4. Система управления и защиты турбины

4.1 Эксплуатация и контроль (визуальный)

4.1.1 Станция оператора в центре управления турбиной

  • Одна панель управления
  • сенсорный экран диагональю 19”, разрешение 1280x1024
  • USB-интерфейс
  • 24 В постоянный ток
  • процессор 533 MHZ FSB, 2 MB SLC
  • память 1 GB DDR266 SDRAM (1х1 GB)
  • DVD-ROM Windows XP Prof MUI
  • DDR SDRAM (2x128 MB) двухканальная, 1,44 MB
  • FDD+DVD ROM, уже установленная ОС Windows 2000
  • 1 шт. модуль связи CP 1613 Ethernet
  • 1 шт. Microsoft small office
  • 1 шт. плоский экран диагональю 19”, терминал с клавиатурой для приема/передачи данных
  • мышка для установки

4.1.2 ПО системы визуализации

  • 1 шт. ПО WIN CC V6.0 + SP2
  • лицензия на использовании

4.1.3 Визуализация специализированного ПО

В наше предложение включены следующие дисплеи наблюдения для эксплуатации и контроля турбиногенератора и вспомогательного оборудования, например:

  • обзор
  • система пара
  • управление турбиной
  • система смазочного масла
  • система управляющего масла
  • визуализация и контроль температуры подшипников
  • генератор, автоматический регулятор напряжения, защита и синхронизация
  • функциональные группы, включая
  • кривые роста, функция архива для измерений, журнала событий, сигнализаций с функцией краткосрочного и долгосрочного хранения

4.2 Регулирование и защита в замкнутом контуре турбины

4.2.1 Аппаратура ПЛК

В качестве системы автоматизации предлагается ПЛК для управления в открытом, закрытом контуре и защиты со следующими модулями:

  • 1 шт. стойка
  • 1 шт. источник питания PS 405 (10 А) с буферным аккумулятором
  • 1 шт. CPU 414-3 с EPROM 1MB
  • 1 шт. промышленный модуль связи Ethernet CP 443-1
  • 1 шт. модуль интерфейса IF 964 DP

4.2.1.1 Аппаратура ПЛК турбины

Для регулирования скорости предоставляется ПЛК со следующими модулями:

  • 1 шт. стойка
  • 1 шт. источник питания PS 307 (2А)
  • 1 шт. CPU-317-2DP
  • 1 шт. аналоговый ввод (8 AI)
  • 1 шт. цифровой модуль ввода/вывода (8DI/8DO)
  • 2 шт. аналоговые модули вывода (4AO)
  • 1 шт. микрокарта памяти
  • 1 шт. карта ввода скорости / 8 каналов

Местный ввод/вывод - периферия:

  • 6 шт. Серийный интерфейс (Profibus DP)
  • 6 шт. цифровые модули ввода (16 DI каждый модуль)
  • 6 шт. цифровые модули ввода (32 DI)
  • 2 шт. цифровые модули вывода (32 DО каждый модуль)
  • 13 шт. аналоговые модули ввода (8 AI каждый модуль)
  • 7 шт. аналоговые модули ввода pt 100 (8 AI)
  • 2 шт. аналоговые модули вывода (8 AО каждый модуль)
  • 5 шт. стойки
  • передние заглушки

4.2.1 Специализированное ПО для ПЛК

Специализированное ПО для турбогенератора и синхронизации состоит из:

  • защита турбины, управление в закрытом контуре турбины:
  •  регулирование скорости/частоты
  • защита турбины, например:
  •  вибрации
  •  температура/давление смазочного масла
  •  обратное давление
  •  другое
  • управление по разомкнутому контуру следующих вспомогательных приводов:
  •  вспомогательный маслонасос
  •  аварийный насос смазочного масла
  •  вытяжной вентилятор масляных паров
  •  обогрев генератора во время бездействия
  •  поворотное устройство
  •  вентилятор конденсатора уплотняющего пара
  • функциональные группы пуска и останова
  •  функциональная группа системы смазочного масла
  •  функциональная группа поворотного устройства
  •  функциональная группа турбины

4.2.2 Измерение скорости и защита от превышения скорости

4.2.2.1 Защита от превышения скорости / регулирование скорости

Прибор защиты от превышения скорости «2 из 3» включает следующее оборудование:

  • 1 шт. стойка MMS 6352 19”
  • 1 шт. соединительная панель MMS 6351/10
  • 3 шт. устройство контроля скорости MMS 6350/D
  • 6 шт. соединительный кабель 3 м MMS 6360
  • 6 шт. соединительный блок MMS 6361 25pol Sub D
  • 3 шт. втулки для датчиков, включая фиксирующие гайки (нержавеющая сталь)
  • 3 шт. датчики скорости

4.3 Защита и синхронизация генератора

4.3.1 Защита генератора

1 шт. многофункциональное защитное реле генератора

Могут быть реализованы следующие функции защиты:

  • дифференциальная защита
  • защита от сверхтоков
  • защита ротора от замыканий на землю
  • защита статора от замыканий на землю (область защиты 95%/Uo)
  • защита обратной мощности
  • защита от недостаточного возбуждения
  • защита от перегрузок
  • защита от превышения напряжения (2 ступени)
  • защита от недостаточного напряжения (2 ступени)
  • защита от недостаточной частоты
  • защита от перевозбуждения
  • защита от несимметричной нагрузки

Реализуемые функции обсуждаются на дальнейших стадиях проекта.

1 шт. соединительное устройство для защиты ротора от замыканий на землю 7XR61
Сигнал аварийного останова турбины и открытие размыкателя цепи генератора и возбуждение останова имеют жесткую проводку

Предусмотрены дополнительные входы/выходы:

  • 1 вход для экстренного останова обмотки статора при высокой температуре
  • 3 входа для внешних сигналов (без потенциала)
  • 4 программируемых выходных сигнала экстренного останова
  • передача данных в основной ПЛК по шине Profibus DP

4.3.2 Шкаф автоматической регуляции напряжения

4.3.3 Синхронизация

1 шт. автоматическое устройство синхронизации установлено на всем оборудовании для ручной синхронизации:

  • двойной вольтметр
  • двойной частотомер
  • переключатели для размыкателей
  • выбор автоматического/ручного режима
  • пуск/стоп синхронизации
  • синхроноскоп

4.4 Шкафы управления турбины и генератора

4.4.1 Шкаф управления турбины

В наш объем поставки входит:

  • 1 шт. шкаф управления турбины, цвет RAL 7032
    Размеры Ш х Г х В = 2000 х 600 х 2200 мм, включая раму основания 200 мм
    Класс защиты IP41

В комплекте:

  • стальная пластина нижней крышки
  • кабель-каналы, профильные рейки и рейки крепления кабеля
  • для входящих / выходящих кабелей
  • освещения шкафа, розетки 110 В переменного тока
  • измерение внутренней температуры в шкафу управления турбины
  • 1 шт. реле экстренного останова
  • 2 вентилятора

Устройство превышения скорости и измерения скорости установлены на поворотной раме. ПЛК смонтированы на раме.
Также отдельно смонтирован на раму и отдельно снабжается электропитанием для контроля и защиты байпаса.

Электропитание 220 В переменного тока для освещения / вентиляторов и также 24 В постоянного тока для шкафа управления турбины поставляется другими

4.4.2 Местный шкаф для распределенного ввода/вывода

Один местный шкаф
 цвет RAL7032
 Размеры Ш х Г х В = 1200 х 600 х 2200 мм, включая раму основания 200 мм
 Класс защиты IP41
 В комплекте:
 стальная пластина нижней крышки,

 освещения шкафа, розетки 220 В переменного тока
 измерение внутренней температуры в шкафу управления турбины
 1 вентилятор

4.4.3 Шкаф управления генератора

1 шт. шкаф управления цвет RAL7032
 Размеры Ш х Г х В = 1600 х 800 х 2200 мм, включая цокольную раму основания 200 мм, класс защиты IP41, в комплекте:
 стальная пластина нижней крышки
 кабель-каналы, профильные рейки и рейки крепления кабеля для входящих / выходящих кабелей
 освещения шкафа, розетки 110 В переменного тока
 измерение внутренней температуры в шкафу управления

Следующие детали устанавливаются на поворотную раму
 защитные реле генератора
 реле синхронизации
 2 трансформатора тока / напряжения для напряжения и тока возбудителя
 все ручное оборудование синхронизации

Одно устройство для передачи данных на ПЛК по шине Profibus устанавливается на стойку
Однолинейная схема электрической сети на передней части шкафа

4.5 Заводское приемочное испытание

Перед отгрузкой цехе будет произведено приемочное испытание.
Все входящие и выходящие сигналы будут полностью проверены от зажимов до визуализации.

5. Перечень электропотребителей

Количество Мощность (кВт / установка) Напряжение (В) Частота (Гц) Резерв Рабоч.
Основной маслонасос 1 11 400 50 1
Вспомогательный маслонасос 1 11 400 50 1 1
Насос регулировки масла 2 15 400 50 1
Аварийный маслонасос 1 3 110 пост. ток 1
Высоконапорный насос (масло гидроподъема) 1 15 400 50 1
Вентилятор масло тумана 1 0.18 400 50 1
Регулирующий клапан температуры масла 1 0.18 230 50 1
Поворотное устройство ротора 1 22 400 50 1
Соленоидный клапан, отбор 2 0.1 230 50 2
Контрольно-измерительные приборы 1 2.5 230 50 1
Защита и возбуждение генератора 1 6 230 50 1
Нагреватель генератора 1 10 230 50 1
Конденсатный насос 2 30 400 50 1 1
Вентилятор уплотняющего парового конденсата 1 5.5 400 50 1
Регулирующий клапан уровня конденсата 1 0.18 230 50 1
Циркуляционный клапан конденсата 1 0.18 230 50 1
1 клапан экстренного торможения на входе в турбину 1 выпрямитель потока, встроенный в клапан торможения 1 регулирующие клапаны 1 компл. валоповоротное устройство 1 рама основания для турбины и редуктора 1 компл. анкерные болты и гайки 1 компл. изоляционный материал для турбины 1 компл. теплоизоляция для турбины 1 компл.

7.2 Система смазки и масла регулятора оборотов

Один комплект системы смазки и масла регулятора оборотов состоит из:

масляный бак 1
основной маслонасос (приводится в действие двигателем переменного тока) 1
вспомогательный маслонасос (приводится в действие двигателем переменного тока) 1
насос регулирующего масла (приводится в действие двигателем переменного тока) 2
аварийный маслонасос (приводится в действие двигателем постоянного тока) 1
охладитель масла (фильтр охлаждающей воды менее 500 мкм) 2
маслофильтр 2
клапан-регулятор температуры масла 1
маслопровод от маслобака к турбине, редуктору и генератору и обратно 1 компл.
клапан-регулятор давления масла 1
трубная обвязка и клапаны для масла 1 компл.
эксгаустер, приводимый двигателем переменного тока 1
электрический подогреватель масла 1

7.3 Редуктор

7.4 Конденсационное устройство

Одно конденсационное устройство состоит из:

система управления турбины, включая регулировку скорости
кожухотрубный поверхностный конденсатор 1
двухступенчатый пароструйный воздушный эжектор 1
пусковой эжектор 1
разрывной диск 1
система регулирования уровня конденсата, включая датчики уровня, клапан регулирования уровня, клапан минимального потока 1 компл.
насос конденсата, включая двигатель переменного тока, пластины основания с анкерными болтами и муфтами 2 компл.
трубная обвязка, включая необходимые клапаны 1 компл.
соединительная деталь турбина-основной конденсатор 1 компл.
измерение вибрации вала для 6 подшипников 1 компл.
измерение осевого положения ротора 1 компл.
система блокировки для защиты турбины 1
необходимые местные КИП 1 компл.
местные датчики и сигнализаторы, смонтированы на стойке 1 компл.
местные датчики и сигнализаторы для установки вне объема поставки, как отдельные детали 1 компл.
специальные кабели для электронной системы управления турбиной 1 компл.

Все модули в объеме поставки продавца снабжены внутренней проводкой и испытаны до клеммных коробок.

7.7 Генератор

7.8 Фундамент турбогенератора

7.9 Услуги

  • шеф-монтаж (по тарифам за день)
  • пуско-наладка (по тарифам за день)
  • пробный пуск (2 недели, 1 смена) (по тарифам за день)
  • обучение персонала покупателя во время пуско-наладки и пробный пуск

7.10 Исключения из объема поставки

Следующие основные компоненты, материалы и услуги не входят в объем поставки продавца турбины:

  • проектирование, компоновка, производство, поставка деталей и услуг, не указанных в данном документе
  • рабочие чертежи
  • анализ устойчивости для внедрения генератора в производство
  • другие системы кодирования на предприятии
  • строительные расчеты, строительные работы, цементные материалы
  • опорные конструкции, платформы, лестницы, ограды для нагревателей и другое оборудование
  • крышки пола, мостки
  • мостки из рифленого листа для отверстий в полу, траншей и каналов
  • системы освещения и связи, оборудование для кондиционирования воздуха
  • распределительное устройство, шкаф управления электродвигателями, низковольтная сеть, кабели и кабельные каналы
  • ИБП 220 В переменного тока, аккумуляторная батарея, зарядное устройство и панели
  • система заземления
  • оборудование для пожаротушения
  • краны
  • ответные фланцы, болты, гайки, прокладки на всех конечных точках поставки
  • система охлаждающей воды
  • нагреватели, деаэратор, линии питательной воды, дренажный бак, система байпаса
  • термоизоляция для труб, кабелепроводов и вспомогательного оборудования
  • первая заправка маслом, масляный сепаратор
  • капюшон для шумозащиты
  • нет испытания на нагрузку по поступающему маслу на заводе, первое заполнение маслом, очиститель масла
  • стандартные инструменты и сварочное оборудование для установки и обслуживании на площадке
  • запчасти (кроме запчастей для пуско-наладки) (опция)
  • испытание турбины без нагрузки в цеху
  • покрасочные материалы на площадке
  • хранение, подготовка к эксплуатации в зимний период
  • установка
  • пуско-наладка, пробная эксплуатация
  • курс обучения на предприятии поставщика
  • проверки третьей стороной
  • эксплуатационное испытание, специально откалиброванные инструменты для эксплуатационного испытания

7.11 Границы поставки

  • плиты основания для поставляемого оборудования
  • патрубки на входе/выходе турбины для свежего пара и пара отбора
  • входные/выходные фланцы у обратного клапана отбора
  • входные/выходные фланцы для охлаждающей воды у конденсатора, охладителя масла и охладителя генератора
  • выход конденсата после регулирующего клапана в области основания турбины
  • выходной вентилятор - конденсатор уплотняющего пара
  • выходной эксгаустер
  • клеммы для электрооборудования/КИП у шкафа управления турбины/генератора
  • клеммы для электрооборудования/КИП у местных распределительных коробок
  • клеммы для портативных КИП
  • клеммы для электродвигателей, приводов, электромагнитных клапанов
  • клеммы 10,5 кВ для генератора

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Особенности конструкции турбогенератора

Турбогенератор - работающий в паре с турбиной синхронный генератор.

Основная функция в преобразовании механической энергии вращения паровой или газовой турбины в электрическую. Скорость вращения ротора 3000, 1500 об/мин. Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше чем сильнее поле ротора т.е. больше ток протекающий в обмотках ротора. Напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель - небольшой генератор на валу турбогенератора.

Турбогенераторы имеют цилиндрический ротор, установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), следовательно, имеют высокие частоты вращения и проблемы с этим связанные. По способам охлаждения обмоток турбогенератора различают: с водяным охлаждением (три воды), с воздушным и водородным (чаще применяются на АЭС).

По качеству, надежности и долговечности турбогенераторов - Россия занимает передовые позиции в мире.

Конструкция турбогенератора

Генератор состоит из двух ключевых компонентов - статора и ротора . Но каждый из них содержит большое число систем и элементов.

Ротор - вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические.

Статор - стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок - вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов : с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии.

Например, турбогенератор ТГ - 6 0 работает на отбираемом от компрессора авиадвигателя сжатом воздухе, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Основными направлениями в области научно-технической политики компании «Электросила » я вляются:

· разработка новой продукции с техническими характеристиками, соответствующими или превосходящими мировые аналоги;

· привлечение к разработке новой продукции ведущих отечественных научных организаций;

· развитие материально-технической базы конструкторских подразделений и исследовательских лабораторий.

Изготавливают турбогенераторы:

· Всего изготовлено более 2701 турбогенераторов суммарной мощностью 275,1 ГВт (или 323,6 ГВ*А)

· Диапазон мощностей выпускаемых турбогенераторов от 2 до 1200 МВт

· Турбогенераторы «Силовых машин» работают в 44 странах мира

· Первый турбогенератор «Силовых машин» был изготовлен филиалом «Электросила» в 1924 году

Особенности конструкции современных турбогенераторов.

Одна их важнейших проблем турбостроения - охлаждение.

Прославленный ленинградский завод Электросила имени С.М. Кирова отгружает в адрес Костромской ГРЭС турбогенератор мощностью 1,2 млн. кВт. Создание такой исполинской электрической машины - замечательная победа советской науки и техники.

Вот что ему рассказали о создании сверхмощных турбогенераторов:

В результате научно-технического прогресса в энергомашиностроении, металлургии, благодаря созданию новых материалов, успехам технологии единичную мощность отечественных турбогенераторов удалось повысить с 0.5 тыс. кВт (1924 г.) до 1200 кВт (1975 г.), т.е. за 50 лет она выросла в 2400 раз.

Это большое достижение нашей науки и техники, особенно если учесть, что чем мощнее была создаваемая машина, тем сложнее оказывался узел проблем, встававших перед учеными, конструкторами, инженерами.

Чтобы получить хотя бы общее представление о том, как достигалось повышение мощности, какие основные задачи приходилось решать при этом, рассмотрим некоторые особенности конструкции современных турбогенераторов.

Ротор турбогенератора , который сидит на одном валу с паровой турбиной, выполняется из массивной поковки магнитной стали. В его обмотку от постороннего источника подается постоянный ток, и таким образом ротор превращается в электромагнит. При вращении ротора создаваемое им магнитное поле пересекает проводники статора, которые уложены в пазах сердечника (он выполняет роль магнитопровода). В результате в проводниках статора индуктируется переменная электродвижущая сила (э. д. с). От статора переменный ток поступает на повышающий трансформатор, а затем по линии электропередачи направляется к потребителям.

Даже это описание работы турбогенератора позволяет установить пути увеличения его мощности.

Ясно, что сделать это можно, повышая частоту вращения ротора : чем она будет больше, тем чаще магнитное поле будет пересекать обмотку статора. Казалось бы, такое решение весьма желательно, так как и паровая турбина имеет наилучшие технико-экономические показатели при больших частотах вращения. Но в действительности возможности в этом направлении строго ограничены. В Советском Союзе стандартная частота тока-50 Гц. Следовательно, чтобы при двух полюсах вырабатывать ток такой частоты, ротор должен делать за секунду 50 оборотов, или 3000 оборотов в минуту.

Очевидно, мощность турбогенератора можно повышать, увеличивая его габариты . Конечно. Ведь чем больше внутренний диаметр и длина статора (соответственно и ротора), тем больше размеры магнитной системы машины, а значит, величина магнитного потока, который и наводит э.д.с. в обмотке статора. И действительно, было время, когда конструкторы добивались роста мощности турбогенератора в значительной степени за счет увеличения его габаритов. Однако и эта возможность довольно скоро была практически исчерпана. Чем же это объясняется?

Длина той части ротора, на которой располагается обмотка (активная длина), не может быть существенно больше 8 м , иначе возникнут недопустимые прогибы. Ограничен и диаметр ротора величиной 1,2-1,3 м , так как по условиям прочности линейная скорость точек его поверхности не должна превышать 170-190 м в секунду (а это уже скорость реактивного самолета), при этом возникают усилия в сотни тонн, стремящиеся вытолкнуть обмотку из пазов. Если сделать ротор диаметром свыше 1,3 м, то даже лучшая легированная сталь не выдержит - центробежные силы разрушат конструкцию. Внешний диаметр статора также имеет свой предел - 4,3 м иначе, чтобы перевезти турбогенератор по железной дороге, придется расширять мосты и тоннели, останавливать встречное движение поездов по маршрутам следования. Может быть, сделать статор разъемным, чтобы облегчить перевозку? Но тогда на электростанции надо создавать филиал завода - сборочный цех и испытательную станцию.

Несмотря на значительные успехи металлургической промышленности, активный объем ротора за период с 1937 по 1974 год вырос менее чем в 2 раза (длина - с 6,5 до 8 м, диаметр - с 1 до 1,25 м), в то время как мощность турбогенераторов увеличивалась в 12 раз (со 100 до 1200 тыс. кВт). «Предельные габариты» были фактически достигнуты уже при создании машины в 300 тыс. кВт. Конечно, некоторые, правда, незначительные изменения размеров с увеличением мощности турбогенераторов происходили и в дальнейшем. Надо заметить, что, хотя и наблюдается прогресс в улучшении магнитных характеристик сталей, имеющиеся пределы по их насыщению не позволяют сколь-нибудь существенно повысить магнитную индукцию (для увеличения мощности генератора).

Центральная проблема

Теперь становится ясно, что для продвижения вверх по шкале мощности остается фактически один путь - увеличение токовой нагрузки статора . Но чем больше ток, проходящий по обмоткам машины, тем сильнее они нагреваются. Увеличивается ток в два раза - в четыре раза увеличиваются тепловые потери, ток растет в три раза, выделение тепла - в девять и т.д. Таков неумолимый закон физики.

Путь увеличения токовых нагрузок оказался довольно тернистым. Теперь главным врагом конструкторов стало тепло. И надо было найти эффективные способы отводить его от частей машины раньше, чем их температура успеет превысить допустимые значения.

Итак, центральной стала проблема охлаждения турбогенератора . От успехов в ее решении и сегодня в основном зависит прогресс турбогенераторостроения.

Вся история борьбы за повышение единичной мощности турбогенератора есть, в сущности, история развития способов его охлаждения.

Турбогенераторы, которые выпускались в довоенные годы, охлаждались воздухом. В машине 100 тыс. кВт устанавливались вентиляторы, которые ежесекундно прогоняли через нее 60 кубометров воздуха. Из-за малой его теплопроводности даже такой воздушный ураган оказался недостаточно эффективным для охлаждения машин большей мощности.

Лучше, чем воздух, отбирает тепло водород , так как его теплопроводность почти в 7 раз выше . К тому же плотность водорода в 10 раз меньше : ротору легча вращаться, а менее вязкой среде, снижаются потери на трение, коэффициент полезного действия турбогенератора увеличивается примерно на один процент; существенно и то что в среде водорода медленнее изнашивается («стареет») изоляция. Мощность турбогенератора при таком охлаждении удалось поднять до 150 тыс. кВт.

Чтобы создать еще более крупную машину, надо было опять-таки улучшать отвод тепла.

У машины в 150 тыс. кВт охлаждающий газ отнимал тепло, омывая наружную поверхность ротора и поверхность вентиляционных каналов в сердечнике статора. Такое косвенное охлаждение оказалось недостаточным для турбогенераторов следующей ступени мощности. У них впервые часть проводников в обмотках сделали полыми, и через них прогонялся водород. Непосредственное охлаждение вместо косвенного позволило создать машину в 200 тыс. кВт (1957 год).

Конечно, заманчиво было использовать для охлаждения воду: ведь ее теплопроводность в 3 раза, а теплоемкость в 3500 раз больше, чем у водорода. Но реализовать эту идею трудно из-за «несовместимости» воды и электричества. При малейшем увлажнении изоляции возможны пробой, короткое замыкание и весьма серьезная авария.

В турбогенераторе мощностью 300 тыс. кВт все же удалось осуществить непосредственное охлаждение водой обмоток статора. И хотя жидкость прогоняется под давлением по полым проводникам статора совсем близко от корпусной изоляции, водяной тракт настолько надежно спроектирован, так тщательно изготовлен, что прорыв воды практически исключен. (Для охлаждения применяют дистиллированную воду, так как обычная вода проводит электрический ток и оставляет осадки растворенных в ней солей на внутренних стенках проводников.)

Схема охлаждения:

водой - статорную обмотку,

водородом - роторную обмотку и активное железо - оказалась очень удачной. Она была использована и при создании турбогенераторов мощностью 500 и 800 тыс. кВт.

Таким образом, мы видим, что появление более совершенных систем охлаждения связано с невозможностью развития предыдущих типов машин, с достижением ими предельных мощностей. Показательно, что в дальнейшем новые решения распространялись не только вверх, но и вниз по шкале мощностей (в настоящее время для всех современных турбогенераторов мощностью 150 тыс. кВт и выше применяется непосредственное водяное охлаждение обмотки статора ) и границы между машинами с различными системами охлаждения устанавливались, по технико-экономическим соображениям.

Следует отметить, что новые принципы исполнения машин, которые появляются при повышении их единичной мощности, почти всегда оказываются и технически и экономически более целесообразными также для машин менее мощных.

Одно из главных следствий создания все более интенсивных систем охлаждения - снижение удельных расходов материалов при одновременном росте мощности турбогенератора . Если для машины в 30 тыс. кВт он был равен 2,75 кг (на 1 кВА), то с увеличением мощности турбогенератора до 800 тыс. кВт стал уже 0,58. Если бы удельный расход у него был бы таким же, как у машины в 30 тыс. кВт, то масса его была бы не 500 т, а 2000 т. А ведь на долю материалов приходится примерно 75 процентов себестоимости турбогенератора1

Проблема отвода тепла действительно центральная, но далеко не единственная. Путь интенсификации, то есть увеличения мощности турбогенератора при почти неизменяющемся его объеме, приводит, естественно, к росту электромагнитной, тепловой и механической напряженности машины. Одновременно с этим снижается (если не принимать специальных мер) её надежность.

Охлаждение

Во время работы в генераторе возникают потери энергии, превращающиеся в теплоту и нагревающие его элементы. Хотя к. п. д. современных генераторов очень высок и относительные потери составляют всего 1,5-2,5%, абсолютные потери достаточно велики (до 10 МВт в машине 800 МВт), что приводит к значительному повышению температуры активной стали, меди и изоляции.

Предельный нагрев генераторов лимитируется изоляцией обмоток статора и ротора, так как под воздействием теплоты происходит ухудшение ее электроизоляционных свойств и понижение механической прочности и эластичности. Изоляция высыхает, крошится и перестает выполнять свои функции. Опытным путем установлено, что процесс этого, так называемого старения изоляции протекает тем быстрее, чем выше ее температура. Математически это выражается формулой

В качестве охлаждающей среды в современных генераторам применяют газы (воздух, водород) и жидкости (вода, масло).

Турбогенераторы выполняются с воздушным, водородным, водородно-жидкостным или чисто жидкостным охлаждением .

По способу отвода теплоты от меди обмоток системы охлаждения подразделяются накосвенные (поверхностные) и непосредственные.

При косвенном охлаждении (оно применяется только при газах) охлаждающий газ не соприкасается с проводником обмоток, а теплота, выделяемая в них, передается газу через изоляцию, которая таким образом оказывается перегруженной в тепловом отношении и значительно ухудшает теплопередачу.

При непосредственном охлаждении водород, вода циркулируют по внутрипроводниковым каналам и, соприкасаясь непосредственно с нагретой медью, отводят от нее теплоту при максимальной эффективности теплопередачи, так как между источником тепла и охлаждающей средой нет никаких барьеров. Большим преимуществом такой системы является также небольшая тепловая нагрузка изоляции.

Исторически первой системой охлаждения генераторов была система косвенного охлаждения. При этой системе циркуляция воздуха в машине осуществляется вентиляторами. Нагретый в машине воздух выбрасывается через горячие камеры в воздухоохладитель, расположенный под генератором, а оттуда, через общие камеры холодного воздуха поступает обратно в генератор (рис. 1-1).

Из схемы на рис. 1-2 видно, что при такой системе вентиляции один и тот же объем воздуха совершает замкнутый цикл охлаждения, поэтому ее называют замкнутой. В зависимости от расположения вентиляционных каналов и направления движения воздуха в машине различают осевую (рис. 1-3) и радиальную (рис. 1-4) вентиляцию.

Замкнутая система косвенного воздушного охлаждения турбогенератора

Эффективность вентиляции повышается при разделении потока охлаждающего воздуха на несколько параллельных струй. Радиальная многоструйная система вентиляции широко применялась до 50-х годов, и сейчас в эксплуатации находится значительное число турбогенераторов до 100 МВт, а также гидрогенераторов до 225 МВт с воздушным охлаждением (рис. 1-5).

В настоящее время косвенное воздушное охлаждение применяют ограниченно, в турбогенераторах только до 12 МВт . Более мощные генераторы оснащаются теперь более эффективными системами охлаждения, позволяющими значительно увеличить единичную мощность без существенного увеличения размеров машины, которые уже у генераторов 100 МВт с косвенным воздушным охлаждением достигли предельных значений, определяемых транспортными, технологическими и конструктивными соображениями.

Замкнутые системы вентиляции М машина; В = вентилятор; О - охладитель

Осевая вентиляция

Повышение единичной мощности генераторов может производиться только за счет увеличения отдельных конструктивных параметров, входящих в (1-9).

Однако частота вращения не может быть повышена, так как определяется частотой сети и числом пар полюсов генератора.

Индукция в зазоре современных крупных турбогенераторов также достигла практически предельного значения 1 Тл и не может существенно меняться из-за насыщения в зубцах.

Диаметр статора нельзя увеличивать из-за транспортных ограничений, а диаметр ротора - по условиям технологии изготовления его бочки.

Длина бочки ротора не должна быть больше шестикратного диаметра бочки, так как иначе статический прогиб ее достигнет недопустимых значений, а собственная частота приблизится к критической, при которой могут возникнуть опасные вибрации ротора. Это означает, что при предельном диаметре ротора 1200 мм длина его активной стали не может быть больше 7200-7500 мм.

Таким образом, единственная возможность повышения единичной мощности генераторов заключается в увеличении линейной нагрузки (а следовательно, плотности тока), которое требует соответствующего увеличения интенсивности отвода теплоты и может быть выполнено только при переходе на принципиально иные способы охлаждения.

Первым шагом повышения интенсивности охлаждения был переход на другую охлаждающую среду (водород) при сохранении системы косвенного охлаждения.

турбогенератор синхронный мощность

Многоструйная система водородного охлаждения турбогенератора

За счет лучших теплоотводящих свойств водорода удалось изготовить генераторы с максимальной мощностью 150 МВт.

Кроме повышения единичной мощности при переходе на водород были получены следующие преимущества: потери в генераторе на трение и вентиляцию уменьшились в 10 раз, так как плотность водорода в 14 раз меньше плотности воздуха. Это привело к повышению к. п. д. турбогенератора примерно на 0,8%. Удлинился срок службы изоляции и повысилась ее надежность, так как при коронировании не возникает озона, вызывающего интенсивное окисление изоляции и вредные азотные соединения.

Из-за значительно меньшей вязкости водорода снижается шум генератора.

При внутренних повреждениях в машине уменьшается вероятность пожара в ней, так как водород не поддерживает горения. Значительно уменьшается поверхность газоохладителей, которые могут теперь быть встроены в корпус генератора. Правда, применение водорода для охлаждения связано с опасностью взрывов гремучей смеси, которая образуется при определенных соотношениях кислорода и водорода. Однако правильная эксплуатация систем водородного охлаждения сводит на нет эту опасность.

Косвенное водородное охлаждение сохранилось в настоящее время только в турбогенераторах 30-60 МВт и в синхронных компенсаторах 32 MBЧА и выше, так как увеличение единичной мощности при косвенной системе охлаждения ограничено превышениями температур в изоляции и стали над температурой охлаждающей среды.

Дальнейшее повышение единичной мощности турбогенераторов оказалось возможным лишь при переходе на систему непосредственного охлаждения . Такое охлаждение применяется теперь не только в машинах 200 -800, но и в машинах 150, 100 и 60 МВт.

Н аилучшей охлаждающей средой является вода . Получение дистиллята с удельным сопротивлением 200-10+3 ОмЧсм не представляет трудностей. Поэтому при жидкостном охлаждении преимущественно применяется вода. Теплоотводящая способность трансформаторного масла примерно в 2,5 раза ниже, чем воды, а кроме того, масло пожароопасно и поэтому значительно реже применяется в качестве охлаждающей среды.

Для непосредственного охлаждения статора и ротора турбогенераторов широко применяется также водород.

Турбогенераторы используются на атомных и тепловых электростанциях .

С их помощью электроэнергия вырабатывается при непосредственном контакте с газовыми и паровыми турбинами в номинальном режиме в течение продолжительного времени.

Существуют три группы турбогенераторов различной мощности :

больше 500 МВт.

Различаются турбогенераторы также и по частоте вращения и частоте сети . Это четырех-полюсные частотой вращения 1500 и 1800 об/мин на частоту сети 50Гц и двухполюсные на частоту вращения 3000 и 3600 об/мин на частоту сети 60 Гц.

Турбогенераторы делятся на генераторы, приводимые во вращение газовой турбиной и с приводом от паровой турбины . Это классификация по виду приводной турбины.

В зависимости от системы охлаждения турбогенераторы разделяются на машины с косвеннымводородным охлаждением , воздушным охлаждением и водородным и жидкостным охлаждением . Любому оборудованию нужно своевременное обслуживание, а также иногда может потребоваться ремонт турбогенераторов.

Классификация по системе возбуждения подразделяет турбогенераторы на машины с независимой тиристорной системой , статической системой самовозбуждения и бесщеточным возбуждением .

Мощность генератора зависит от частоты и напряжения. Работа генератора допускается при напряжении не более 110% от номинального на выводах обмотки статора.

Сверхпроводящая обмотка возбуждения сделана из кабеля, поперечником 0,7 мм с 37 сверхпроводящими жилами из ниобий-титана в медной матрице. Центробежные и электродинамические стремления в обмотке воспринимаются бандажом из нержавеющей стали. Между открытой толстостенной пленкой из нержавеющей стали и бандажом расположен духовой электротермический экран, охлаждаемый потоком протекающего в тракте безжалостного газообразного гелия (он позже возвращается в ожижитель). Подшипники работают при комнатной температуре. Обмотка статора сделана из медных посредников (охладитель - вода) и охвачена ферромагнитным экраном из шихтованной стали. Ротор поворачивается в вакуумированном пространстве изнутри стенки из изоляционного материала. Сохранение вакуума в камере гарантируют уплотнители.

Размещено на Allbest.ru

...

Подобные документы

    Выбор главных размеров турбогенератора. Расчет номинального фазного напряжения при соединении обмотки в звезду. Характеристика холостого хода. Определение индуктивного сопротивления рассеяния Потье. Оценка и расчет напряжений в бандаже и на клине.

    курсовая работа , добавлен 21.06.2011

    Определение размеров и электромагнитных нагрузок. Проектирование статора и ротора. Характеристика холостого хода. Параметры и постоянная времени турбогенератора. Отношение короткого замыкания, тока короткого замыкания и статической перегружаемости.

    курсовая работа , добавлен 10.11.2015

    Понятие и характеристика паровой турбины. Особенности конструкции и предназначение паровой турбины. Анализ расчета внутренних потерь и схемы работы теплофикационной турбины и последовательность расчета ступеней давления. Эксплуатация турбинной установки.

    курсовая работа , добавлен 25.03.2012

    История создания и виды электродвигателя. Принцип работы и устройство синхронного электродвигателя переменного тока. Изучение работы генератора на основе закона электромагнитной индукции Фарадея. Изучение характеристики простейшего электрогенератора.

    презентация , добавлен 12.10.2015

    Принцип действия, основные характеристики и элементы конструкции синхронного вертикального двигателя, область применения. Расчет электромагнитного ядра явнополюсного синхронного двигателя, его оптимизация по минимуму приведенной стоимости и резервов.

    курсовая работа , добавлен 16.04.2011

    Понятие и функциональные особенности погрузочно-разгрузочных машин, сферы их практического применения и значение. Группа режима работы и направления ее исследования. Классификация и типы кранов, их специфика. Устройство, элементы тележки, принцип работы.

    презентация , добавлен 17.05.2013

    Принцип действия синхронного генератора. Типы синхронных машин и их устройство. Управление тиристорным преобразователем. Характеристика холостого хода и короткого замыкания. Включение генераторов на параллельную работу. Способ точной синхронизации.

    презентация , добавлен 05.11.2013

    Применение синхронных двигателей в устройствах автоматики и техники. Изготовление ротора, турбогенератора. Предназначение двигателей для привода мощных вентиляторов, мельниц, насосов и других устройств. Конструктивное исполнение статора синхронной машины.

    презентация , добавлен 01.09.2015

    Понятие и задачи языков программирования общего назначения, их классификация и разновидности, их функциональные особенности и сферы практического применения. Структурные составляющие языка QBasic, принцип его работы, главные операции и возможности.

    презентация , добавлен 30.03.2014

    Факторы, влияющие на жизнедеятельность человека в полёте. Работоспособность авиационных систем охлаждения по высоте и скорости полета. Конструкция и принцип работы турбохолодильника. Система охлаждения аппаратуры средних и заднего технических отсеков.

Введение

1. Технические данные

2. Устройство и работа генератора

3. Указания по технике безопасности

Заключение

Список литературы

Введение

Турбогенераторы (ТГ) представляют собой основной вид генерирующего оборудования, обеспечивающего свыше 80% общего мирового объема выработки электроэнергии. Одновременно ТГ являются и наиболее сложным типом электрических машин, в которых тесно сочетаются проблемы мощности, габаритов, электромагнитных характеристик, нагрева, охлаждения, статической и динамической прочности элементов конструкции. Обеспечение максимальной эксплуатационной надежности и экономичности ТГ является центральной научно-технической проблемой.

В отечественном турбогенераторостроении огромный вклад в развитие теории, разработку вопросов расчета, проектирования и эксплуатации ТГ внесли многие ученые, исследователи, конструкторы, среди которых в первую очередь следует отметить Алексеева А.Е., Лютера Р.А., Костенко М.П., Одинга А.И., Бергера А.Я., Комара Е.Г., Ефремова Д.В., Иванова Н.П., Глебова И.А., Казовского Е.Я., Еремина М.Я., Вольдека А.И., Жерве Г.К., Важнова А.И. Среди зарубежных специалистов следует отметить Видемана Е., Келленбергера В., Шуйского В.П., Готтера Г.

Вместе с тем, несмотря на огромное количество работ, выполненных за прошедшие десятилетия, вопросы дальнейшего развития теории, разработки более совершенных технологий и конструкций ТГ, методов расчета и исследований не теряют своей актуальности.

Турбогенератор - неявнополюсный синхронный генератор, основная функция которого состоит в конвертации механической энергии в работе от паровой или газовой турбины в электрическую при высоких скоростях вращения ротора (3000,1500об/мин). Механическая энергия от турбины конвертируется в электрическую при помощи вращающегося магнитного поля, которое создается током постоянного напряжения, протекающего в медной обмотке ротора, что в свою очередь приводит к возникновению трехфазного переменного тока и напряжения в обмотках статора. В зависимости от систем охлаждения турбогенераторы подразделяются на несколько видов: генераторы с воздушным охлаждением, генераторы с водородным охлаждением и генераторы с водяным охлаждением. Также существуют комбинированные типы, например, генератор с водородно-водяным охлаждением (ТВВ). Турбогенератор ТВВ-320-2 предназначен для выработки электрической энергии на тепловой электростанции при непосредственном соединении с паровой турбиной К-300-240 Ленинградского металлического завода или Т-250-240 Уральского турбомоторного завода.

1. Технические данные

Номинальные параметры генератора при номинальном давлении и температуре охлаждающих сред даны в табл. 1.

Наименование основных параметров Номинальный режим Длительно допустимый режим
Полная мощность, квт 353000 367000
Активная мощность, квт 300000 330000
Коэффициент мощности 0,85 0,9
Напряжение. в 20000 20000
Ток, а 10200 10600
Частота, гц 50 50
Скорость вращения, об/мин 3000 3000
Коэффициент полезного действия, % 98,7 Не нормируется
Критическая скорость вращения, об/мин 900/2600 900/2600
Соединение фаз обмотки статора Двойная звезда
Число выводов обмотки статора 9 9

Основные параметры охлаждающих сред

Водород в корпусе статора

Дистиллят в обмотке статора

Техническая вода в газоохладителях

Техническая вода в теплообменниках обмотки статора

Избыточное давление технической воды должно быть не больше избыточного давления дистиллята в обмотке.

Допустимое отклонение определяется температурой дистиллята.

Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред. Изоляция обмоток генератора класса "B".

Наибольшая допустимая температура отдельных узлов генератора и охлаждающих сред указана в табл. 2.

*Допускается превышение температуры обмотки ротора над температурой холодного водорода не более чем на 75.


Допустимая температура по температурам сопротивления, заложенным под клинья статорной обмотки, не должна превышать 75 между показаниями наиболее и наименее нагретого термометров сопротивления не должна превышать 20 могут быть уточнены по согласованию с предприятием-изготовителем для каждой конкретной машины после проведения тепловых испытаний.

Дополнительные технические данные

Расход масла на подшипник генератора (без уплотнения вала), л /мин 370
Избыточное давление масла в опорных подшипниках, кгс/см 2 0.3÷0.5
Расход масла на уплотнения вала с обеих сторон генератора, л/мин 180
Газовый объем собранного генератора, м 3 87
Число ходов воды газоохладителя 2
Масса газоохладителя, кг 1915
Масса ротора генератора, кг 55000
Масса средней части с серьгой для монтажа (без рым-лап), кг 198200
Масса концевой части, кг 23050
Масса статора с рым-лапами, газоохладителями и щитами, кг 271000
Масса подшипника с траверсой и фундаментной плитой, кг 11100
Масса вывода концевого (крайнего), кг 201
Масса полущита наружного, кг 75

2. Устройство и работа генератора

Общая функциональная схема работы

Генератор выполнен с непосредственным охлаждением обмотки статора дистиллированной водой (дистиллятом), а обмотки ротора и сердечника статора – водородом, заключенным внутри газонепроницаемого корпуса.

Дистиллят в обмотке статора циркулирует под напором насосов и охлаждается теплообменниками, расположенными вне генератора.

Охлаждающий водород циркулирует в генераторе под действием вентиляторов, установленных на валу ротора, и охлаждается газоохладителями, встроенными в концевые части корпуса генератора.

Циркуляция воды в газоохладителях и теплообменниках осуществляется насосами, расположенными вне генератора.

Маслоснабжение опорных подшипников и уплотнений вала производится от масляной системы турбины.

Для аварийного снабжения маслом опорных подшипников и уплотнений вала на выбеге агрегата предусмотрены резервные баки, установленные вне генератора.

Генератор возбуждается от высокочастотного индукторного генератора через полупроводниковые выпрямители.

Корпус статора и фундаментные плиты

Сварной газонепроницаемый корпус статора состоит из средней части, несущей сердечник с обмоткой, и двух концевых частей.

В концевых частях располагаются лобовые части обмотки и газоохладители.

В концевой части со стороны возбудителя установлены концевые выводы обмотки - вверху нулевые, а внизу линейные.

Механическая прочность корпуса достаточна, чтобы статор мог выдержать без остаточных деформаций внутреннее давление в случае взрыва водорода.

Наружные щиты статора непосредственно объединены с внутренними щитами, к которым прикреплены щиты вентилятора.

Половины щитов вентиляторов изолированы от внутренних щитов и между собой.

Разъемы щитов расположены в горизонтальной плоскости.

В щитах и в бочке ротора предусмотрены специальные каналы, по которым охлаждающий газ попадает в лобовые части обмотки ротора.

Газоплотность соединений соединения плоскостей корпуса и наружных щитов обеспечивается резиновым шнуром, приклеенным по дну канавок, выфрезерованных в наружных щитах.

Чтобы приникнуть внутрь корпуса, не разбирая наружных щитов, в нижней его части предусмотрен люк.

До установки генератора на фундамент статор опирается на транспортные лапы, приваренные к корпусу.

Статор устанавливается на фундамент посредством рым- лап, которые при транспортировании снимаются.

Основанием для генератора и возбудителя служат фундаментные плиты, выполненные из стальных листов. Они устанавливаются во время монтажа на закладные плиты и постоянные подкладки и подливаются бетоном.

Для крепления генератора к фундаменту используются фундаментные шпильки.

Основанием для подшипника генератора является фундаментная плита коробчатого типа.

Газоохладители

Выделяющееся в генераторе тепло отводится четырьмя вертикальными охладителями.

Каждый охладитель состоит из биметаллических, латунно-алюминиевых трубок с прокатанными алюминиевыми ребрами.

Трубки завальцованы с обеих сторон в трубные доски, к которым приболчены камеры, уплотненные резиной и связанные между собою рамами.

Охладители вставляются в статор сверху и верхними трубными досками опираются на концевые части статора.

Нижние камеры по отношению к корпусу статора уплотнены резиной таким образом, что обеспечивается свободное тепловое расширение охладителей в вертикальном направлении.

Съемные крышки водяных камер позволяют производить чистку трубок и контроль за их состоянием, не нарушая герметичности корпуса статора.

Напорные и сливные трубы присоединены к нижним крышкам.

Для выпуска воздуха из верхних камер охладителей предусмотрены контрольные дренажные трубки.

Каждая трубка, пропущенная через одну из охлаждающих трубок и нижнюю камеру, заканчивается фланцем, приваренным к камере.

К фланцам присоединяются отводящие трубки с кранами, которые во время работы генератора должны быть постоянно открыты с минимальным сливом воды в дренаж.

Сердечник статора

Сердечник статора собран на клиньях из сегментов электротехнической стали толщиной 0.5 мм и вдоль оси разделён вентиляционными каналами на пакеты.

Поверхность сегментов покрыта изоляционным лаком.

Клинья сердечника статора приварены к поперечным кольцам корпуса.

Спрессованный сердечник статора стягивается нажимными кольцами из немагнитной стали. Зубцовая зона крайних пакетов уплотнена нажимными пальцами из не магнитной стали, установленными между сердечником и нажимными кольцами.

Для демпфирования электромагнитных потоков рассеяния лобовых частей обмотки статора под нажимными кольцами установлены медные экраны.

Для уменьшения передачи на корпус и фундамент стопериодных колебаний сердечника в клиньях статора выполнены продольные прорези, что создаёт упругую связь сердечника статора с корпусом.

Обмотка статора

Обмотка статора-трехфазная, двухслойная, с укороченным шагом, стержневая, с транспозицией элементарных проводников. Лобовые части обмотки-корзиночного типа. Стержни обмотки сплетены из сплошных и полых элементарных изолированных проводников и в пазах сердечника закрепляются специальными клиньями.

Для охлаждения обмотки по полым проводникам проходит дистиллированная вода.

На концах стержней припаяны наконечники для подвода воды к полым проводникам. Наконечники припаяны к стержням твёрдым припоем типа П Ср. Электрическое соединение стержней осуществляется медным хомутом и клиньями с пайкой мягким припоем типа ПОС.

Начала и концы обмотки выведены наружу через концевые выводы. Обозначение линейных и нулевых концевых выводов указано на монтажном чертеже, входящем в комплект эксплуатационной документации.

Для подвода и слива охлаждающей воды из обмотки статора имеются кольцевые коллекторы, установленные на изоляторах. Соединение коллекторов со стержнями обмотки осуществляется водосоединительными трубками из изоляционного материала. Охлаждающая вода в обмотке проходит по двум стержням, шинам и выводам, соединенным последовательно. Для контроля заполнения коллекторов водой и для выпуска из них воздуха в верхних точках коллекторов установлены дренажные трубки, выведенные из корпуса статора наружу.

В период эксплуатации дренажные трубки должны быть открыты с минимальным сливом для непрерывного удаления воздуха из системы охлаждения обмотки статора. Контроль проходимости дистиллята в стержнях обмотки статора осуществляется измерением температуры термосопротивлениями, заложенными под клинья в каждом пазу сердечника статора.

Ротор изготовлен из цельной поковки специальной стали, обеспечивающей его механическую прочность при всех режимах работы генератора.

Обмотка ротора выполнена из полосовой меди с присадкой серебра. Её охлаждение осуществляется непосредственно водородом по схеме самовентиляции с забором газа из зазора машины.

Дюралюминиевые клинья, удерживающие обмотку в пазах, имеют заборные и выходные отверстия для охлаждающего газа, совпадающие с боковыми каналами, выфрезерованными в катушках.

Пазовая и витковая изоляции катушек выполнены из прессованного стеклополотна на теплостойком лаке. Контактные кольца, насаженные в горячем состоянии на промежуточную, изолированную от них втулку, установлены за подшипником со стороны возбудителя.

Стержни токоподвода, расположенные в центральном отверстии ротора, соединяются с обмоткой и контактными кольцами с помощью изолированных гибких шин и специальных изолированных болтов, которые для обеспечения газоплотности ротора имеют уплотнения сальникового типа.

Роторные бандажи, выполненные из специальной немагнитной стали, имеют горячепрессовую посадку на центрирующую заточку бочки ротора.

От осевых перемещений бандажное кольцо удерживается кольцевой шпонкой и гайкой, навинченной на носик бандажа с наружной стороны.

Для повышения термической стойкости ротора против воздействия токов обратной последовательности, замыкающихся по торцам бочки ротора, поверх изоляции лобовых частей обмотки уложены внахлёст короткозамыкающие кольца в виде двухслойных медных гребёнок. Зубья гребёнок располагаются под клинья в пазах с обмоткой и в специальных пазах, выфрезерованных в больших зубцах бочки.

Лобовые части обмотки ротора изолированы от бандажей и центрирующих колец изоляционными сегментами.

Опорные подшипники

Опорный подшипник генератора, установленный со стороны возбудителя, является подшипником стоякового типа и имеет шаровой самоустанавливающийся вкладыш.

Смазка подшипника-принудительная. Масло подаётся под избыточным давлением из напорного маслопровода турбины.

В конструкции подшипника предусмотрен дистанционный контроль температуры баббита вкладыша и сливного масла с помощью термометров сопротивления. Визуальный контроль слива масла производится через стекло в патрубке.

На удлинённой части основания стояка подшипника установлена щеточная траверса, которая служит для подвода тока возбуждения к контактным кольцам ротора.

Для устранения подшипниковых токов предусмотрена изоляция этого подшипника от фундамента и от всех маслопроводов.

На стойке каркаса траверсы предусмотрена установка изолированной от корпуса щётки, которая используется при измерении сопротивления изоляции обмотки ротора и для введения защиты от двойного замыкания обмотки ротора на корпус.

Опорный подшипник генератора со стороны турбины поставляется турбинным заводом.

Уплотнения вала

Для предотвращения выхода водорода из статора на наружных щитах генератора установлены двухкамерные масляные уплотнения вала торцевого типа. В уплотнениях этого типа вкладыш с баббитовой заливкой постоянно прижимается к упорному кольцу вала ротора давлением прижимного масла и следует за всеми перемещениями ротора вдоль оси.

Уплотняющее масло под давлением, превышающим давление газа в генераторе, подаётся в напорную камеру и оттуда через отверстия во вкладыше поступает в кольцевую канавку, проточенную в баббитовой заливке вкладыша. Затем масло заполняет радиальные канавки и клиновые скосы и растекаясь в обе стороны от кольцевой канавки, образует при вращении сплошную пленку, которая препятствует утечке газа из корпуса генератора.

Камеры уплотняющего и прижимного масла, образованные между корпусом и вкладышем, уплотнены резиновыми шнурами, помещенными в кольцевые канавки на поверхности вкладыша.

Для защиты внутренней полости статора от попадания масла предусмотрены маслоуловители, установленные на наружных щитах между уплотнением вала и внутренней полостью статора, и дополнительные камеры в вентиляторных щитах.

Для устранения подшипниковых токов корпус уплотнения и маслоуловитель со стороны возбудителя изолированы от наружного щита и маслопроводов.

Необходимое давление уплотняющего и прижимного масла обеспечивается регуляторами, входящими в систему маслоснабжения.

Вентиляция

Вентиляция генератора осуществлена по замкнутому циклу. Газ охлаждается газоохладителями, встроенными в корпус статора. Необходимый напор газа создаётся двумя вентиляторами, установленными на валу ротора.

3. Указания по технике безопасности

На электростанциях, оборудованных генераторами с водородным охлаждением, руководствоваться ведомственными правилами по технике безопасности.

При работе генератора с водородным охлаждением в какой-то степени происходить утечка водорода в атмосферу. Образовавшаяся газовая смесь может загореться, а при содержании в ней пяти и более процентов водорода- взорваться.

Чтобы исключить возможность пожаров и взрывов во время монтажа, при подготовке к работе и в эксплуатации, принять меры к тому, чтобы поблизости от генератора не было невентилируемых объемов, куда может проникать водород.

При осуществлении вентиляции этих объёмов исключить возможность попадания водорода на узлы агрегата, работающего с искрением или имеющего высокую температуру.

Допуск обслуживающего персонала в корпус генератора производить после того, как из него полностью вытеснен углекислый газ и проведен химический анализ воздуха.


Заключение

В настоящее время электроэнергия в основном вырабатывается на тепловых, гидравлических и атомных электростанциях. Из них преимущественное развитие получили тепловые электростанции, что объясняется следующим. Стоимость электроэнергии, вырабатываемой гидроэлектростанциями, значительно ниже стоимости электроэнергии, вырабатываемой тепловыми станциями. Однако по размерам капиталовложений гидроэлектростанции в несколько раз дороже тепловых и сооружаются они более длительное время. Поэтому наращивание мощностей для покрытия всё возрастающих потребностей в электроэнергии более целесообразно за счет строительства тепловых электростанций. В этом случае, вместе с более быстрым ростом энерговооружаемости ускоряется рост производительности труда во всех народного хозяйства, что оказывает дополнительное влияние на сокращение сроков окупаемости производимых затрат.генератор котельный циркуляция маслоснабжение

Изложенное подтверждает актуальность установки на котельных турбогенераторов, главным образом, как для покрытия собственных нужд котельных, так и отдачи внешним потребителям электроэнергии.


Список литературы

1. Браймайстер Л.Г., Поздняков Б.И., Теймуразян Ю.В. и др. "Руководство по капитальному ремонту турбогенератора ТВВ-320-2", Москва: СПО ОРГРЭС, 1976 г.

2. Федоров В.А., Смирнов В.М. "Опыт разработки, строительства и ввода в эксплуатацию малых электростанций", Москва: Теплоэнергетика, №1, 2000 г.

3. Кореннов Б.Е. "Замена РОУ противодавленческой турбиной – эффективное энергосберегающее предприятие для котельных и ТЭЦ", Москва: Промышленная энергетика, №7, 1997 г.

4. Бушуев В.В., Громов Б.Н., Доброхотов В.И. и др. "Научно-технические и организационно-экономические проблемы внедрения энергосберегающих технологий", Москва: Теплоэнергетика, №11, 1997 г.

5. Хрилев Л.С. "Основные направления развития теплофикации", Москва: Теплоэнергетика, №4, 1998 г.

6. Доброхотов В.И. "Энергосбережение: проблемы и решения", Москва: Теплоэнергетика, №1, 2000 г.