Снаружи соответственно точка росы будет. При каких условиях возникает точка росы? Когда можно или нельзя утеплять стены изнутри


Построил стены, завел дом под крышу и поставил окна – готова коробка. Именно на этом этапе заканчивается «конструктивный» период стройки и начинается установка оборудования, утепление стен дома и дальнейшая его подготовка под чистовую отделку.

И именно на этом этапе важно правильно смонтировать утеплитель, да и весь пирог утепления на стенах дома, чтобы в дальнейшем не получить себе такую головную боль, как точка росы в стене со стороны жилого помещения.

Что за зверь такой – точка росы и почему плоха именно точка росы в стене, как это выглядит на практике?

Для начала немного теории, а затем практически примеры из собственного опыта, который я получил, приобретая коробку дома с уже установленным слоем утеплителя.

Температура точки росы

Точка росы имеет обыкновение двигаться. Зависит этот момент от двух показателей – температуры и влажности.

Каждый из них также делится пополам – на температуру в помещении и на улице, на влажность в помещении и на улице.

При всех расчетах и формулах, которые используются для того, чтобы рассчитать точку росы, предполагается, что влага будет конденсироваться из пара при движении изнутри наружу. Именно такая ситуация наблюдается зимой, когда температура и влажность в помещении выше, чем температура и влажность на улице. Температура точки росы будет расчетной при расчетных показателях для наружных и внутренних условий.

Летом, когда влажность и температура на улице обыкновенно выше, чем влажность и температура в помещении, точка росы не имеет такого значения. Почему? Потому что разница температур невысока и оба показателя температуры, уличный и домовой, находятся в положительных значениях.

А еще потому, что даже если точка росы в стене могла бы образоваться при плюсовых значениях обеих температур, сильного влияния на комфорт проживания в доме это бы не оказало.

Другое дело зимой. Влага, конденсируемая из пара, при низких температурах попадает в утеплитель и стену, и там замерзает. Для утеплителя намокание чревато либо полной потерей теплоизоляционных свойств (базальтовая вата), либо разрушением при замерзании воды (пенопласт). Для стены все то же самое, особенно для газобетонных и газосиликатных блоков.

Сам лично наблюдал печальную картину разрушения стены блочного дома в зимний период из-за неправильно сделанного утепления. К весне в стене из газосиликата толщиной 400 миллиметров были почти сквозные дыры.

Как рассчитать точку росы

Для расчета точки росы используется таблица значений конденсации водяного пара в зависимости от показателей влажности и температуры. Берется значение наружной и внутренней температуры и значение наружной и внутренней влажности. Получается температура точки росы, при которой будет происходить выпадение воды из водяного пара (образование росы).

Что нам дает эта температура? Очень многое. Мы в состоянии рассчитать, где будет конденсироваться пар в пироге утепления, то есть где будет точка росы в стене – в утеплителе, в несущей стене или на внутренней поверхности несущей стены – прямо в комнате.

Естественно, что самый правильный вариант – это точка росы в утеплителе. В этом случае не будет никаких негативных моментов для внутренних помещений. Чтобы не было также негативных моментов для утеплителя, стоит на этапе планирования правильно подбирать тип утеплителя для стен.

Менее приемлемый вариант – это точка росы в стене дома, которая является несущей. Здесь негативные моменты для внутренних помещений будут зависеть от материала стены. Получается такая ситуация тогда, когда утеплитель смонтирован неправильно или неправильно выбрана толщина утеплителя.

Самый неприемлемый вариант – это точка росы внутри помещения, на внутренней поверхности несущей стены. Обычно это случается тогда, когда дом совсем не утеплен или утеплен неправильно – изнутри.

Точка росы в доме – что делать?

Итак, обещанный пример из собственного опыта. Я приобрел коробку кирпичного дома, которая была утеплена изнутри пенопластом. О чем думали те люди, которые строили эту коробку, остается только гадать. Благодаря такому утеплению получилась точка росы в доме, на внутренней поверхности несущих стен, между кирпичом и утеплителем.

В чем выразилась точка росы в доме, в каких негативных моментах?

Их было два. Во-первых, кирпичная стена изнутри была всегда сырая в небольшие плюсовые и минусовые температуры. В комнатах стоял затхлый запах, при вскрытии под всем пенопластом были большие очаги плесени.

Во-вторых, в минусовые температуры было невозможно нормально обогреть этот дом, кирпичная кладка была исключена из теплового контура дома, благодаря тому, что была отсечена от теплого воздуха помещений пенопластом.

Что я сделал, чтобы победить точку росы в доме?

Во-первых, был демонтирован весь пенопласт с внутренних поверхностей несущих стен.

Во-вторых, утеплитель был смонтирован снаружи и был оштукатурен по методике мокрого фасада.

И, в-третьих, вместо прежнего внутреннего утепления в 50 миллиметров, было установлено наружное утепление в 150 миллиметров.

При правильном утеплении — точка росы снаружи, в доме — тепло и сухо.

Что стало? Стало тепло, сухо и комфортно.

ФИНАЛЬНАЯ ЗАМЕТКА. Не делайте воздушную прослойку между несущей стеной и воздухом комнаты. Часто обшивают стены изнутри ГКЛ – это дешевле и быстрее, чем штукатурить. Однако в воздушном зазоре между ГКЛ и кирпичом образуются микросквозняки, которые препятствуют теплопередаче и прогреву внутренней части кирпичной кладки.

Я свои кирпичные стены изнутри заштукатурил самой обычной штукатурной смесью. Сверху теперь можно красить или клеить обои. Толщина обоев такова, что ими, как теплоизолятором, можно пренебречь.

Точка росы является своеобразным указателем содержания водяных паров в воздухе. При повышении влажности повышается и значение точки росы (при определенной температуре и давлении). Значение точки росы выражается в градусах. Это температура, при которой достигается максимальное насыщение воздуха водяными парами, если они постоянно содержаться в воздухе при одной и той же температуре.

Точка росы не может превышать температуру воздуха. В результате соприкосновения холодной поверхности и теплого воздуха влажность падает — это явление называют конденсацией .

Получаются капельки влаги, которые могут трансформироваться в туман, иней, облако или дождь. Простейший пример – закипающий на плите чайник, на горячей крышке которого можно видеть капельки влаги. Температура крышки и есть точка росы в данном случае.

Зная температуру точки росы, можно сделать получить представление об относительной влажности воздуха. Если температура точки росы близка к температуре окружающего воздуха — значит влажность высокая (при совпадении получается туман! ).

И напротив, если значения точки росы и температуры сильно расходятся, то можно говорить о низком содержании водяных паров в атмосфере.

Ещё один простой пример можно рассмотреть, когда в теплое помещение с мороза заносят какую-либо вещь. Воздух над ней охлаждается, насыщается водяными парами и на вещи конденсируются капельки воды.

В дальнейшем вещь прогревается до температуры воздуха помещения и конденсат испаряется. Кстати, этим явлением обусловлена рекомендация не включать сразу в сеть бытовые электрические приборы, занесенные с мороза.

Другой, не менее хорошо знакомый пример – запотевание стекол в доме. У многих зимой окна «плачут», на них выпадает конденсат. Необходимо понимать, что на это явление в большей мере влияют два фактора — влажность и температура.

Поэтому, если у вас нормальный стеклопакет и правильно проведено утепление, а конденсат есть, — значит, не всё в порядке с влажностью; возможно плохая вентиляция, вытяжка.

Одно из самых интересных физических явлений — это изменение агрегатного состояния воды, в частности — закипание воды. Читайте более подробную информацию в статье это действительно очень интересно. Уверены, вы найдете здесь немало нового для себя.

Как рассчитать точку росы? ^

Чтобы найти температуру точки росы ранее пользовались громоздкими формулами, Вот одна из них, справедливо работающая при температуре от 0 до +60С . Тр=b((aT/b+T)+lnRH)/a-((aT/b+T)+lnRH); здесь а=17,27, b=237,7, RH – относительная влажность воздуха, выраженная в долях единицы, Ln – натуральный логарифм, Тр – точка росы.

Сейчас можно просто зайти в интернет и на соответствующих сайтах разыскать калькулятор, который покажет температуру точки росы в зависимости от температуры воздуха и давления (обычно берется нормальное атмосферное давление в 762 мм рт.ст.).

Один из «продвинутых» способов расчета точки росы заключается в использовании тепловизоров. Часть моделей имеет такую функцию. На дисплее показывается термограмма, которая наглядно демонстрирует места с температурой ниже точки росы.

Таблица для определения точки росы ^

Более доступный метод – использование бытового психрометра. Это прибор, в котором совмещены два спиртовых термометра. Один из них имеет специальное увлажнение, другой обычный, сухой.

Так как влага испаряется, то термометр с увлажнением охлаждается. Влажность ниже – температура меньше. Значение влажности в 100% означает, что показания обоих термометров сравнялись.

Зная влажность и температуру, отображаемые на дисплее, можно рассчитать точку росы по таблице. Ими пользуются для быстрого расчета. Указывается значение температуры окружающего воздуха, влажности и соответствующее значение точки росы.

А вы знаете, какой должна быть Изучите данную статью, нет ничего более ценного, чем здоровье наших детей!

Все про аквааэробику и ее пользу для похудения вы сможете прочитать , самая важная, актуальная и полезная информация!

Все про лечение с помощью живой и мертвой воды читайте в статье:
, берегите Ваше здоровье!

Как определить точку росы? ^

Правильное определение этого параметра важнейшее значение имеет в строительстве. От правильности расчётов зависит возможность образования конденсата на стенах, который резко снижает долговечность конструкций, а в ряде случаев делает проживание в помещении просто невозможным.

Той или иной влажностью обладает любая стена (если она не из металла). Причина образования конденсата кроется не только в материале самих стен, а в теплоизоляции, от правильного обустройства которой и зависит место образования конденсата. Температура, при которой он выпадает, зависит от:

  • температуры воздуха в помещении;
  • влажности в помещении.

Пользуясь таблицами, можно определить, что если температура, к примеру, в помещении +20С при влажности в 60%, то на любой поверхности, имеющей температуру в 12С и ниже, будет образовываться влага.

При уменьшении влажности до 40% конденсат будет появляться на поверхности, имеющей температуру ниже 6С. То есть, чем ниже влажность, тем точка росы дальше от температуры воздуха в помещении.

Месторасположение точки росы зависит от:

  • наружной влажности;
  • внутренней влажности;
  • температуры внутри и снаружи помещения;
  • толщины стен, утеплителя.

1. Как «ведет» себя точка росы в стене без утеплителя? Возможны несколько вариантов её нахождения:

  • между центром стены (по толщине) и наружной поверхностью: в этом случае внутренняя стена остаётся сухой;
  • между центром стены и внутренней поверхностью: внутренняя поверхность может замокать на несколько дней при резком снижении температуры воздуха в регионе;
  • на поверхности стены внутри помещения: в течение зимнего периода стена будет мокрой.

2. При использовании утеплителя картина будет несколько иной. Место образования конденсата может располагаться (утепление снаружи):

  • внутри утеплителя: это справедливо при верных теплотехнических расчётах, — стена будет сухой, точка рассчитана правильно;
  • в любом месте, описанном выше (п.1): это происходит в случае, если толщина утеплителя выбрана неверно.

3. Внутреннее утепление. В этом случае место образования конденсата сдвигается внутрь помещения; при этом температура под утеплителем понижается. Точка росы может быть:

  • между центром стены и утеплителем или на их границе в случае резкого похолодания;
  • только под утеплителем: стена будет частично мокнуть весь зимний период;
  • внутри утеплителя: он будет мокнуть в течение всего холодного периода.

Как используется точка росы? ^

Зная местоположение точки росы, можно правильно рассчитать толщину утеплителя, не допуская тем самым образования конденсата в нежелательном месте.

Но есть и другой вопрос: в какой ситуации стену утеплять изнутри, а в какой – снаружи? Чтобы ответить на него, необходимо принимать во внимание все факторы, влияющие на точку росы и её положение:

  • климатическая зона;
  • режим проживания (постоянный, временный) в помещении;
  • с чем граничит утепляемая стена (иное помещение или улица);
  • работа вентиляционной системы (в т.ч. вытяжка и правильность расчётов всей системы);
  • качество работы отопительной системы в помещении;
  • материал, толщина стен;
  • температура снаружи и внутри помещения;
  • наружная и внутренняя влажность;
  • утепление всех элементов дома (пол, стены, потолок).

Утепление помещения изнутри возможно, если ситуация выглядит нижеследующим образом:

  • в помещении постоянно проживают;
  • вентиляция функционирует согласно нормативам для данного помещения;
  • так же хорошо работает отопление;
  • все элементы конструкции утеплены в соответствии с требованиями по конкретной климатической зоне;
  • стена, предназначенная для утепления достаточно толстая (в соответствии с климатической зоной): т.е. толщина утеплителя в любом случае не должна превышать 50 мм.

Если говорить уж совсем просто, то всё вышеизложенное можно сформулировать так: чем теплее регион, лучше отопление, вентиляция и толще стена, тем больше вероятность внутреннего утепления стены.

Практика показывает, что в абсолютном большинстве случаев предпочтительнее обустраивать наружное утепление. В этом варианте гораздо больше шансов, что точка росы окажется в нужном месте.

Почему «плачут» окна ^

Существуют конкретные рекомендации по микроклимату в жилом помещении. Это влажность -40-50% и температура +18-23С . Поддержание этих параметров сводит к минимуму возможность образования конденсата на поверхности стекол.

Его появление так же связано с жизнедеятельностью человека (он тоже выделяет влагу!). То есть, в помещении должно находиться столько человек, сколько допускают санитарные нормы.

Повышенная влажность может быть связана и с неправильным воздухообменом. Здесь тоже есть свои нормы: не менее 3-х «кубов» на «квадрат» площади за один час.

Для кухонь эти требования ещё жёстче: от 6-ти до 9-ти «кубов» в час, в зависимости от типа плиты (9 куб. м/час – для газовой ). Поэтому всё зависит от качества вентиляции.

Бывает противоречивая ситуация; в доме сделали капитальный ремонт, поменяли старые окна на стеклопакеты, а в помещениях стала появляться плесень. С чем это связано?

Дело в том, что в ходе полной реконструкции меняют отопление, вместо старых газовых колонок ставят современные котлы, утепляют окна. По большому счёту, возможностей для естественной вентиляции стало меньше.

Если раньше влага из помещения могла выходить через неплотные оконные щели, через вытяжку старой газовой колонки, то теперь такой возможности нет.

Выход один – разработка и установка новой системы вентиляции. Если такой возможности нет, — то просто чаще проветривайте комнаты, кухню.

Эксплуатационные характеристики стеклопакета (коэффициент «К», в частности) имеют значение, но уже вторичное.

Возможные последствия неправильного выбора точки росы ^

Воздух, идущий в холодное время года из теплого помещения наружу, переохлаждается, проявляясь в виде осаждающейся влаги. Поверхностью служит любой материал, имеющий температуру ниже точки росы. В результате при пониженной температуре наружного воздуха стены находятся постоянно во влажном состоянии. Это ведет к образованию плесени, способствует развитию различных микроорганизмов. Впоследствии они могут запросто оказаться во вдыхаемом жильцами воздухе, что приводит к заболеваниям различного рода; например, астме.

Здание с отсыревающими стенами не прослужит долго; процесс разрушения будет неминуемо ускоряться. Пораженные плесенью, грибком дома долго не «живут». Поэтому важно рассчитать правильную точку ещё на стадии проектирования здания. Должен быть правильно выбран:

  • материал стен и их толщина;
  • материал утеплителя, его толщина;
  • способ утепления стен (снаружи, изнутри);
  • вариант системы отопления и вентиляции, обеспечивающий оптимальный микроклимат (18-23С при 40-50% влажности).

Точку росы можно рассчитать самостоятельно. При этом необходимо учитывать климатические особенности региона проживания. Если вы не надеетесь на собственные силы, то можно обратиться в любую серьёзную строительную компанию. Наверняка там будет специалист, занимающийся подобными расчетами.

Видео телеканала «Усадьба» про важность определения точки росы перед началом строительства:

Точка росы - это температура, при которой пар, содержащийся содержится в воздухе, превращается в конденсат в виде росы. Данный параметр важно учитывать при строительстве и утеплении стен. Поэтому важно заранее выяснить, что такое точка росы (ТР) и как ее правильно определить, чтобы выяснить, в каком месте возможно будет собираться много конденсата и принять соответствующие меры.

Воздух в окружающей среде всегда включает в свой состав водяной пар, концентрация которого зависит от многих факторов. Внутри зданий пар выделяют люди и другие живые организмы. Также он поступает во внутренне пространство от различных повседневных процессов – стирки, глажки, уборки, приготовления еды и так далее.

Снаружи процент влаги в атмосфере находится в зависимости от погодных условий. Причем наполнение воздуха парами располагает своим пределом, при достижении которого следует процесс конденсации влаги и зарождения тумана.

В этот момент воздушная смесь впитывает в себя максимальное количество пара и ее относительная влажность составляет 100%. Последующее насыщение ведёт к возникновению тумана – мелких капелек воды в атмосфере.

Когда не окончательно насыщенная парами воздушная масса (влажность менее 100%) контактирует с поверхностью, чья температура на несколько градусов ниже его собственной, то конденсат образуется даже без тумана.

Дело в том, что воздух при разной температуре может вместить различное количество пара. Чем выше температура, тем больше влаги он может поглотить. Поэтому, когда воздушная смесь с относительной влажностью 80% соприкасается с более прохладным предметом, то она резко охлаждается, предел ее насыщения снижается, а относительная влажность достигает 100%.

Тогда и происходит выпадение конденсата, то есть появляется точка росы. Именно это явление можно наблюдать ранним летним утром на траве. На заре почва и трава еще холодные, а солнце быстро нагревает воздух, его влажность у земли быстро достигает 100% и выпадает роса. Процесс конденсации сопрягается с выделением тепловой энергии, которая была потрачена ранее на парообразование. Поэтому роса быстро сходит.

Таким образом, температура точки росы – переменная величина, которая зависит от относительной влажности и температуры воздуха в определенный момент. Чтобы определить точку росы и ее температуру применяют различные измерители - термогигрометры, психрометры и тепловизоры.

Точка росы зависит от относительной влажностью воздуха. Чем она выше, тем ближе ТР к фактической температуре воздуха. Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Точка росы в строительстве необходима для того, чтобы понимать, соответствует ли степень утепления стен тому, чтобы не образовывался конденсат.

При значениях точки росы более 20 °С ощущается физический дискомфорт, воздух кажется душным; более 25 °С люди с болезнями сердца или дыхательных путей подвергаются опасности. Но такие значения достигаются очень редко даже в тропических странах.

Как определить точку росы?

На самом деле, чтобы определить точку росы не нужно производить сложные технические расчеты по формулам, измерять относительную влажность воздуха и т.д. Нет смысла задумываться над тем, как рассчитать точку росы, так как это давно уже сделали специалисты. А результаты их вычислений занесены в таблицу, где указаны значения температур поверхностей, ниже которых из воздуха с различной влажностью начинает образовываться конденсат.


Фиолетовым цветом обозначена температура по снип в помещении зимой – 20 °С, а зеленым выделен сектор, который указывает диапазон нормированной влажности – от 50 до 60%. При этом ТР колеблется от 9.3 до 12 °С. То есть, при соблюдении всех норм конденсат внутри дома образовываться не будет, так как в помещении нет поверхностей с такой температурой.

По-другому обстоит дело с наружной стеной. Изнутри ее обволакивает воздух, прогретый до +20 °С, а снаружи она подвергает воздействию — 20 °С и более. Соответственно, в толще стены температура медленно растет от -20 °С до + 20 °С и в определенной зоне она обязательно будет равна 12 °С, что при влажности 60% даст конденсацию.

Но для этого еще необходимо, чтобы водяной пар дошел до этой зоны через материал несущей конструкции. Здесь появляется еще один фактор, который влияет на определение точки росы – паропроницаемость материала. Этот параметр всегда нужно учитывать при возведении стен.


Итак, на процесс образования конденсата внутри наружных стен влияют следующие факторы:

  • температура окружающего воздуха;
  • относительная влажность воздуха;
  • температура в толще стены;
  • паропроницаемость материала возведенных стен.

Для измерения данных показателей в толще стены нет никаких анализирующих приборов. Вычислить их можно только расчетным путем.

Формула расчета точки росы

Если вы все же хотите самостоятельно рассчитать точку росы, то можете воспользоваться следующими формулами:

Tp = (b f (T, RH)) / (a — f (T, RH)), где:

f (T, RH) = a T / (b + T) + ln (RH / 100), где:

Тр – температура точки росы, °С; a = 17.27; b = 237,7; Т – комнатная температура, °С; RH – относительная влажность, %; Ln – натуральный логарифм.

Расчет проведем для таких значений температуры и влажности:

  • Т = 21 °С;
  • RH = 60 %.

Сначала вычислим функцию f (T, RH)

f (T, RH) = a T / (b + T) + ln (RH / 100),

f (T, RH) = 17,27 * 21 / (237,7+21) + ln (60 / 100) = 1,401894 + (-0,51083) = 0,891068

Затем вычислим температуру точки росы

Tp = (b f (T, RH)) / (a — f (T, RH)),

Tp = (237,7 * 0,891068) / (17,27 — 0,891068) = 211,807 / 16,37893 = 12,93167 °С

Итак, результат наших вычислений Тр = 12,93167 °С.

Расчет точки росы по формулам очень сложный. Лучше воспользоваться готовыми таблицами.

Наружное или внутреннее утепление?

Паропроницаемость – это параметр, демонстрирующий, какое количество водяного пара может пропустить через себя определенная разновидность материала за установленный промежуток времени. К проницаемым относят все строительные материалы с открытыми порами – бетон, минеральная вата, кирпич, дерево, керамзит. Говорят, что дома, возведенные из них, «дышат».

В обычных и утепленных стенах всегда есть условия для формирования точки росы. Однако данное явление не возникает в конкретном месте стены. Со временем условия с обеих сторон конструкции меняются, поэтому и точка росы в стене перемещается. В строительстве это явление называется «зоной возможной конденсации».


Поскольку несущие конструкции проницаемы, то они могут самостоятельно избавляться от выделяющейся влаги, при этом значимость имеет обустройство вентиляции с обеих сторон. Не зря утепление стен минеральной ватой снаружи делается вентилируемым, ведь точка росы тогда перемещается в утеплитель. Если все сделано правильно, то влага, которая выделяется внутри минеральной ваты, сквозь поры уходит из нее и уносится потоком вентиляционного воздушного потока.

Поэтому важно обустраивать хорошую вентиляцию в жилых помещениях, поскольку она выводит не только вредные вещества, но и лишнюю влагу. Стена мокнет лишь в одном случае: когда конденсация происходит постоянно и в течение длительного времени, а влаге деться некуда. В нормальных условиях материал просто не успевает напитаться водой.

Современные полимерные утеплители почти не пропускают пар, поэтому при теплоизоляции стен их лучше размещать снаружи. Тогда необходимая для конденсации температура будет внутри пенопласта или пенополистирола, но пары к этому месту не доберутся, а потому и увлажнения не возникнет. И наоборот, утеплять полимером изнутри не стоит, поскольку точка росы останется в стене, а влага станет выходить на стыке двух материалов.

Пример такой конденсации – окно с одним стеклом в зимнее время, оно не пропускает пары, поэтому на внутренней поверхности образуется вода.

Внутреннее утепление рационально выполнять при таких условиях:

  • стена достаточно сухая и относительно теплая;
  • утеплитель должен быть паропроницаемым, чтобы выделяющаяся влага могла выйти из конструкции;
  • в здании должна хорошо функционировать система вентиляции.

Практика показывают, что предпочтительнее обустраивать термозащиту сооружения с его внешней стороны. Тогда больше шансов на то, что ТР окажется в зоне, которая не допустит конденсации влаги внутри помещения.

Таким образом, точка росы в строительстве стен присутствует всегда, однако если правильно рассчитать количество образующейся влаги и использовать правильный утеплитель при изоляции стен снаружи, то зону конденсации удастся сместить. В результате, внутри помещения влага проступать не будет.

Одно из важнейших понятий в строительстве – точка росы. На этапе утепления стен это позволяет правильно подобрать вид и толщину теплоизоляционного материала, сформировать оптимальный микроклимат внутри строения. Определить точку росы можно несколькими способами. Однако нужно также знать, что делать с полученным результатом.

Небольшой экскурс в физику явления

Точка росы – это температура воздуха, при которой излишки содержащейся в нем влаги выпадают в виде конденсата. Почему ее становится слишком много? Дело в том, что теплый воздух удерживает большое количество водяных паров, холодный – гораздо меньше. Именно эта разница при перепаде температур образует конденсат . Примером явления служат капли воды на холодных водопроводных трубах или окнах, туман.

Что еще нужно знать про точку росы:

  • Чем выше влажность, тем она ближе к температуре воздуха, и наоборот.
  • Ее значение не может быть выше температуры воздуха.
  • Конденсат всегда появляется на холодных поверхностях . Это объясняется тем, что теплый воздух рядом с ними охлаждается, и его влажность снижается.

Единица измерения точки выпадения конденсата – градусы Цельсия.

Точка росы в стене дома – почему ее важно знать

Большую часть года между температурно-влажностным режимом улицы и помещения есть существенная разница. Именно поэтому в толще стен с утеплителем нередко появляются участки конденсатообразования. При изменении погодных условий они сдвигаются ближе к наружной или внутренней поверхности стены . То есть, к более холодному или теплому участку.

Пример: температура воздуха стабильно равна 25°C, а влажность – 45%. В этом случае конденсат образуется на участке с температурой 12,2°C. При повышении влажности до 65% точка росы сдвигается на более теплый участок, где 18°C.

Почему так важно знать местонахождение точки выпадения конденсата? Потому что она определяет, какой именно слой стенового «пирога» подвергается разрушающему воздействию влаги. Самый плохой вариант – когда намокает утеплитель. При таких условиях большинство теплоизоляционных материалов теряет свои свойства. Они деформируются, пропускают холодный воздух , гниют, теряют упругость. Особенно подвержена этим процессам минеральная вата.

Варианты расположения проблемных зон

Точка росы имеет свойство смещаться, однако чаще всего выделяют три зоны ее расположения:

  • Ближе к наружной поверхности стены. Такой вариант имеет место, если стена не утеплена . Появление проблемной зоны возможно также при наружном утеплении недостаточной толщины.
  • Ближе к внутренней поверхности стены. При отсутствии утепления конденсат в этом месте легко образуется в период похолодания. Внутреннее утепление смещает участок конденсатообразования в область между поверхностью стены и утеплителем . При наружном утеплении это явление встречается редко, если все расчеты были выполнены правильно.
  • В толще утеплителя. Для наружной теплоизоляции это оптимальный вариант. При внутреннем утеплении велик риск появления со стороны комнаты плесени и, как следствие, нарушения микроклимата .

Обратите внимание! На образование конденсата в стене влияет не только температурно-влажностный режим со стороны улицы и помещения. Определяющими факторами являются также толщина конструкции, коэффициент теплопроводности применяемых материалов.

Расчет точки росы

Рассчитывают значение параметра несколькими способами. Это может быть онлайн-калькулятор, сводная таблица, специальный прибор, математическая формула.

Использование данных таблицы

Специальная таблица для расчета точки росы содержит приблизительные ее значения. Это обусловлено тем, что при их выведении учитывалась только температура воздуха и его относительная влажность. В левом столбце таблицы указана температура воздуха, в верхней строке – относительная влажность воздуха в процентах. На пересечении столбцов и строк как раз и получается нужное значение.

Существует несколько вариантов таблиц. Однако чаще всего диапазон температур составляет -5°C..+30°C, а влажности – 30-95%. Применение таблицы удобно, если нужно произвести расчеты быстро. При возможности результат лучше перепроверить другим способом, например, с помощью специального калькулятора в режиме онлайн.

Расчет по математической формуле

Математическая формула для вычисления температуры конденсатообразования – сложная и громоздкая. Для выполнения расчетов используют две константные величины, фактическое значение температуры воздуха и относительной влажности . Последнюю нужно брать в объемных долях.

В отличие от работы с таблицей, диапазон последних двух параметров больше. Формула позволяет учитывать температуру от 0 до +60°C, влажность – от 1 до 100%. Погрешность результата не превышает половины градуса Цельсия. Однако пользоваться формулой удобно лишь тогда, когда на это есть свободное время.

Расчет в программе-калькуляторе

Специальные калькуляторы позволяют в онлайн-режиме рассчитать точку росы в стене дома. Найти их можно на специализированных сайтах. Для расчета понадобится ввести ряд исходных данных. От ресурса к ресурсу они разнятся, но стандартный набор включает в себя информацию о следующих параметрах:

  • материал стены;
  • количество ее слоев и их толщина;
  • температура снаружи и внутри дома;
  • влажность в помещении и на улице.

Большинство калькуляторов не просто рассчитывают нужное значение. Они также выдают графики ее возможного перемещения и зоны конденсации влаги.

Применение приборов для выполнения расчетов

Вне зависимости от способа, которым будут выполняться расчеты, понадобятся исходные данные . Для их получения нужно запастись некоторыми приборами. Так, для определения температуры подойдет обычный термометр, а для определения влажности – гигрометр. Для удобства они объединены в таком устройстве, как цифровой термогигрометр. Все полученные значения выводятся на небольшой экран. Некоторые модели приборов определяют и температуру выпадения конденсата. Определить проблемную зону могут и некоторые модели строительных тепловизоров.

Как сдвинуть точку росы в стене

Если после проведения всех расчетов вас не устраивает расположение точки росы, стоит задуматься над ее смещением. Для этого можно:

  • увеличить слой утеплителя снаружи;
  • использовать материал с высокой паропроницаемостью;
  • демонтировать слой внутреннего утепления, перенеся его наружу;
  • корректировать микроклимат в помещении – установить принудительную вентиляцию, дополнительно нагревать воздух.

Подходящий вариант выбирают, исходя из климатических условий региона проживания, конструктивных особенностей дома, финансовых возможностей и используемых строительных материалов.

Игнорирование такого явления, как конденсация влаги в стеновом «пироге», может слишком дорого обойтись. Как минимум, это неприятный запах в помещении, постоянная сырость . Как максимум – большие колонии плесневых грибов, портящих стен, разрушающих утеплитель и вредящих здоровью домочадцев. Таким образом, расчет точки росы имеет важное значение, если вы хотите возвести надежные и сухие стены для вашего дома.

Атмосферный воздух всегда содержит некоторое количество влаги в виде водяного пара, что и обусловливает его влажность, причем в теплом воздухе всегда больше, чем в холодном. При температуре воздуха +20 °С и относительной влажности 60% в воздухе содержится 10,4 г водяных паров на 1 м³ сухого воздуха, которые создают парциальное давление 1403 Па. При температуре –10°С и относительной влажности 60% в воздухе содержится около 1,3 г пара на 1 м³ сухого воздуха, создающего парциальное давление 156 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии.

Количество влаги в виде пара в воздухе нельзя повышать бесконечно - в конце концов наступает такое насыщение паром, что влага начинает конденсироваться в виде капель воды на любой поверхности, и даже на пылинках, летающих в воздухе. Так, например, формируются дождевые капли: водяной пар в воздухе собирается в капельки, если есть частицы, к которым можно «прилипнуть». Над океанами водяной пар может смачивать частицы соли и образовывать капельки. Или, если температура снизилась до 0°С либо еще ниже, вода может намерзать на пылевые частицы, поднятые ветром в воздух. Из обычной пыли возникают ледяные кристаллы. Другие мелкие частицы, например дым, также могут образовывать гранулы, вокруг которых собираются водяные облака. Так вот - вернёмся к теме - это предельное содержание пара зависит только от температуры и не зависит от давления воздуха. Этот пар в максимальном своём количестве создаёт, соответственно, максимальное давление и называется давлением насыщенного водяного пара или максимальной упругостью водяного пара и обозначается буквой Е, измеряется в Паскалях.

Ещё разок, соберём всё в одно предложение - максимальная упругость водяного пара Е соответствует максимально возможному насыщению воздуха водяным паром F . Чем выше будет температура воздуха, тем больше будет значение Е , т. е. тем больше предельное количество влаги Fмакс может содержаться в воздухе.

Связь между давлением пара и его количеством выражается формулой:

F = 0.00794E / (1 + t/273)

Интересно, что математически вычислить величину Е или F невозможно. В диапазоне температур от 0°С до +40°С величина давления пара Е с точностью до ±1% описывается экспонентой, но при понижении температуры отклонение достигает 130% при температуре -47°С! Приближённая формула выглядит так:

Погрешность в диапазоне температур от 0°С до +40°С менее 1%, однако в диапазоне от 0°С до -20°С погрешность возрастает до 30%, а к -45°С переваливает за 100%. В диапазоне от +40°С до +50°С погрешность в районе 3%.

Для точных расчётов используют таблицы с экспериментальными данными, которые приведены в нормативных документах по теплотехние, например в ТКП 45-2.04-43-2006:

Упругость водяного пара в воздухе, также как и его абсолютная влажность, не дает представления о степени насыщения воздуха влагой, если при этом не указана его температура. Например, если дано е = 1400 Па, то при температуре воздуха +23 °С это составит только половину возможной максимальной его упругости (Е = 2809 Па). При +12 °С это соответствует полному насыщению воздуха влагой, а при +10 °С водяной пар вообще не может иметь такую упругость. Чтобы выразить степень насыщения воздуха влагой, ввели понятие его относительной влажности. Относительная влажность воздуха φ выражается в процентах как отношение действительной упругости водяного пара в воздухе е к максимальной его упругости Е , соответствующей данной температуре. Следовательно, имеем:

φ = е / Е · 100%

Отсюда можно выразить парциальное давление водяного пара в воздухе, е :

e = E · φ / 100 .

Например, при 20°С максимальное парциальное давление составляет Е = 2338 Па . При влажности воздуха 40% парциальное давление водяного пара е = 2338 · 40 / 100 = 935 Па . Если температура воздуха данной влажности повысится, то его относительная влажность φ понизится, т. к. величина упругости водяного пара е останется без изменения, а значение максимальной упругости Е увеличится с повышением температуры. Наоборот, при охлаждении воздуха по мере понижения его температуры будет увеличиваться его относительная влажность вследствие уменьшения величины Е . При некоторой температуре, когда Е станет равно е , относительная влажность воздуха будет φ = 100 %, т. е. воздух достигнет полного насыщения водяным паром. Вот эта температура и носит название - точка росы для данной влажности воздуха.

Таким образом, точка росы есть та температура, при которой воздух данной влажности достигает полного насыщения водяным паром.

Если продолжать охлаждение воздуха ниже точки росы, то упругость водяного пара, содержащегося в нём, будет понижаться соответственно значениям Е для данной температуры и излишнее количество влаги будет конденсироваться, т.е. превращаться в капельножидкое состояние. Такое явление наблюдается в природе в виде образования туманов около рек в летнее время; когда с заходом солнца воздух охлаждается, его относительнаявлажность повышается и температура воздуха падает ниже точки росы. С восходом солнца по мере согревания воздуха понижается его относительная влажность: капельки влаги, образующие туман, постепенно испаряются и туман рассеивается. В зимнее время образование туманов связано или с понижением температуры воздуха, или с поступлением масс теплого влажного воздуха, который, охлаждаясь при смешивании с холодным воздухом, конденсирует влагу, образуя туман. Точка росы имеет большое значение для оценки влажностного режима ограждения, и ее приходится определять по данной влажности воздуха.

В связи с тем, что само определение Е является экспериментальным, а не высчитываемым математически, точка росы высчитывается тоже только приблизительно и в диапазоне от 0 до +40°С по формуле:

где a =17.27; b =237.7°C; T =температура в °С; ln - нат.логарифм;

RH =относительная влажность в объёмных долях (0 < RH < 1.0).

Но при результате рассчёта Tр менее 0°С формула начинает существенно отличаться от реальности, поэтому существуют опять-таки экспериментально подтверждённые таблицы в сводах правил. А лучше просто воспользоваться . Для общего представления я приведу табличку с правильно вычисленной точкой росы для разных температур и влажности из ТКП 45-2.04-43-2006 (слева).

Или вот мой небольшой флеш-калькулятор, корректно работающий в диапазоне температур -50°С... +50°С, составленный на основе таблиц из КТП для диапазона -25 ... +30°С и из книги Landolt-Bornstein, Physikalich - chemische - Tabellen T II (Берлин, 1923) для всего остального диапазона. Заодно калькулятор вычисляет максимальное давление водяного пара при заданной температуре, давление водяного пара в воздухе при заданной влажности, вычисляет максимальную абсолютную влажность и абсолютную влажность воздуха (количество воды, содержащейся в 1м³). Для работы калькулятора требуется установленный флеш-плеер (https://get.adobe.com/ru/flashplayer/ )